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Abstract - Many service systems are appointment-driven. In such systems,
customers make an appointment and join an external queue (also referred to as
the “waiting list”). At the appointed date, the customer arrives at the service
facility, joins an internal queue and receives service during a service session.
After service, the customer leaves the system. Important measures of interest
include the size of the waiting list, the waiting time at the service facility and
server overtime. These performance measures may support strategic decision
making concerning server capacity (e.g. how often, when and for how long
should a server be online). We develop a new model to assess these performance
measures. The model is a combination of a vacation queueing system and an
appointment system.

Keywords - appointment system, vacation model, overtime, waiting list, queue-
ing system

1 Introduction

In appointment-driven systems, service is administered only during predefined service ses-
sions (e.g. during the opening hours of a doctors office). When making an appointment,
a customer is assigned an appointment date (at some future service session) and joins a
waiting list. At the appointment date, the customer leaves the waiting list and enters the
service facility (e.g. a doctors office). At the service facility the customer once more joins a
queue (e.g. the waiting room at the doctors office), receives service and leaves the system.
Appointment-driven systems may be found in healthcare, legal services, administration and
many other service systems.

It is clear that an appointment-driven system is in fact a combination of two distinct
queueing systems. In a first queueing system, customers arrive at the queue (i.e. the waiting
list) when making an appointment. At the appointment date the customer is removed from
the waiting list and enters a second queueing system. In this second queueing system, the
customer joins the queue at the service facility, receives the actual service and leaves the
appointment-driven system. In the remainder of this article we will refer to both queueing
systems as the appointment making queueing system (AMQ) and the service facility queue-
ing system (SFQ) respectively. Both queueing systems require a rather distinct modeling
approach. The AMQ can be considered as a vacation model while the SFQ is modeled as
a so-called appointment system (AS). Building on the findings in both the literature on va-
cation models and the literature on AS, we combine the AMQ and SFQ to create a single
model which allows the study of appointment-driven systems. We will refer to this combined
model as the appointment-driven queueing system. Using the appointment-driven queueing
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system, we assess: (1) the time a customer spends in the waiting list; (2) the time a customer
spends waiting at the service facility (this does not include the processing time itself); (3)
The probability of a server to work overtime; (4) The amount of overtime a server performs.
These performance measures can easily be implemented in an optimization procedure to
support strategic decisions concerning server capacity (e.g. how often, when and for how
long should a server be online).

The contribution of this article is twofold: (1) we present a new vacation model to
model the AMQ; (2) we present a new model (the appointment-driven queueing system) to
study an appointment-driven system and obtain several, strategically important performance
measures. The remainder of this article is organized as follows. Section 2 gives a detailed
problem description. Section 3 and 4 discuss the AMQ and SFQ respectively. In section
5 both models are combined to create the appointment-driven queueing system. Section 6
concludes.

2 Problem description

In this section we provide a detailed description of the dynamics at work at the appointment-
driven system. First we define the problem setting. Next, we formally describe the basic
concepts of the appointment-driven system.

2.1 Problem setting

We use a simple example to illustrate the problem setting. Imagine a doctor’s office in
which a single doctor sees patients every Thursday evening and every Friday afternoon. The
doctor’s office has opening hours from 6 PM until 8 PM on Thursday and from 2 PM until 6
PM on Friday. During these service sessions a maximum number of patients may be treated.
Assume that on Thursday a maximum of 4 patients receives service. On Friday 8 patients
may be served. Patients themselves call to make an appointment and are scheduled for
service at the first service session in which the maximum number of patients has not yet
been reached. For instance, suppose that on Monday 12 patients are already waiting for
service. These patients will all be treated at the upcoming service sessions on Thursday
and Friday. Assume that an additional patient arrives on Monday evening. The first service
session in which there is still room available is on Thursday of the upcoming week. As such,
we schedule this extra patient accordingly. We illustrate this procedure in Figure 1.
The making of an appointment indicates the arrival of a patient at the system. Until arrival
at the doctor’s office on the scheduled date, patients wait in an external queue (e.g. at
home). We refer to this queue as the “waiting list”. At the start of a service session, a
number of patients is removed from the waiting list and is allowed to enter the doctor’s
office. At the doctor’s office, patients are kept in the waiting room and are treated in order
of arrival (FCFS). Patients leave the system after service completion. Often, the doctor has
to work overtime in order to service all patients present in the waiting-room. Further assume
that:

• When making an appointment, patients are assigned the first available time slot.
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Table 1: List of important definitions

J The number of vacations/service sessions in a cycle
T The length of a cycle of service sessions
Tj The length of a vacation j
kj The maximum number of customers served at service session j
λ The Poisson arrival rate of customers
υj The rate of an Erlang phase used to approximate vacation j
V The total number of phases of the Erlang distributions
µ The service rate of customers at the service facility
C2
s The squared coefficient of variation of the service times

C2
a The squared coefficient of variation of the interarrival times

• Patients always show up on the appointed service session and they arrive on time.

• No unscheduled patients show up.

• All patients that arrive at the service session are served by the doctor (i.e. no balking
occurs).

• The doctor provides service even if only a single patient has made an appointment
during a given service session.

Most of these assumptions may easily be relaxed and serve only the purpose of maintaining
transparency of the upcoming discourse.

In such a system, several strategically important performance measures may be assessed:
(1) the time a customer spends in the waiting list; (2) the time a customer spends waiting at
the service facility (this does not include the processing time itself); (3) The probability of a
server to work overtime; (4) The amount of overtime a server performs. These performance
measures can be used to determine the optimal frequency of service sessions (e.g. how often
and when should a doctor see patients) as well as the optimal length of these service sessions
(e.g. how much time should be spent servicing patients during a specific service session).

2.2 Problem definition

Prior to advancing to the formal description of the problem, we present an overview of the
most important symbols in Table 1.

The service process at an appointment-driven system is a succession of service sessions
during which customers are served at a single server. Each service session i (index i is defined
as i ∈ {1, 2, . . .}) is fully characterized by: (1) the maximum number of customers ki allowed
to receive service; (2) the length of the service session Si; (3) the intersession time Ii (i.e. the
time between the end of service session i and the start of service session i+ 1; during which
service at the service facility is unavailable). Figure 2 illustrates the service process at the
appointment-driven system. We assume recurring cycles to be present in the succession of
service sessions (e.g. a doctor receiving patients every Thursday evening and every Friday
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Figure 2: The service process at an appointment-driven system
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Figure 3: Succession of service cycles

afternoon). A cycle of service sessions has length T and contains J service sessions (indexed
by j ∈ {1, . . . , J}). Note that, due to the cyclic nature of the service process, a service
session of type j + (iJ) is also a service session of type j. In addition, each service session i
may be associated with a vacation i of deterministic length Ti = Si + Ii. We illustrate these
dynamics in Figure 3. In the example, each cycle of service sessions contains two service
sessions (service sessions j and j + 1). Their corresponding vacations are of deterministic
length Tj and Tj+1.

In this article, we model the deterministic vacation length using an Erlang distribution
of sufficient phases. Each phase of the Erlang distribution is exponentially distributed with
rate υi and

1

υi
=
Ti
V
, (1)

where V is some number sufficiently large as to safeguard the approximation of a determin-
istic vacation length Ti by means of an Erlang distribution of parameters V and υi (note
that as V approaches infinity, the variance of the resulting Erlang distribution approaches
zero).

Whenever a customer makes an appointment, an arrival at the system takes place. The
time between two successive appointments is assumed to be exponentially distributed with
mean 1/λ and squared coefficient of variation C2

a = 1. The interarrival times of individual
customers are assumed to be i.i.d. Note that the assumption of exponentially distributed
interarrival times has only a limited impact on the precision of the model while it has been
shown by Palm (1943) and Khinchin (1960) that the sum of a large numbers of independent
renewal processes (i.e. the arrival processes of the different customers) will tend to a Pois-
son process. In addition, Lariviere and Van Mieghem (2004) show that the assumption of
exponential interarrival times is reasonable in many service systems.

At the start of a service session i, min(Q, ki) customers are removed from the waiting
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list (where Q is the number of customers in queue at the start of the service session).
These customers are served during service session i. The arrival of these customers at the
service facility itself is managed by the AS. In our model we adopt a simple AS in which all
customers are assumed to be present at the service facility at the start of the service session
(this AS is also referred to as the block appointment rule). Note however that other AS can
be implemented in the appointment-driven system. Once at the service facility, customers
receive the actual service. Let 1/µ and σ2

s denote the mean and the variance of the service time
respectively. The squared coefficient of variation of the service times is given by C2

s = σ2
sµ

2.
In addition, the service times of individual customers are assumed to be i.i.d.

In this article, we use the gamma distribution to model the service times of the customers
at the service facility. The gamma distribution is characterized by a shape parameter α and
a scale parameter θ. The probability density function of the gamma distribution is:

f (x, α, θ) = xα−1
e

−x
θ

Γ (α) θα
. (2)

The mean and variance of the gamma distribution are given by:

1

µ
= αθ, (3)

σ2
s = αθ2. (4)

Note that other distributions may also be implemented in the appointment-driven system.
For our purposes however, we use the gamma distribution while it provides a simple and
transparent framework to model a general class of practical settings. The following set of
features further motivates the use of the gamma distribution:

• The convolution of i i.i.d. gamma distributions of parameters α and θ results in a
gamma distribution of parameters iα and θ.

• The gamma distribution may be used to match the first two moments of any continuous
distribution in the [0,∞) interval.

• The truncated mean of the gamma distribution may easily be obtained (this feature is
particularly useful to compute overtime performance measures).

Further note that we assume the probability of the server working overtime longer than
the interval between subsequent service sessions to be negligible (i.e. we assume that there
is no overlap in service between subsequent service sessions).

3 Appointment making queueing system

In this section we develop the AMQ. We first provide a problem definition and next present
the model itself.
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3.1 Problem definition

Over the past decades, queueing systems with server vacations have received a lot of attention
in queueing literature. Vacation models observe the queueing behavior of systems in which
the server takes a vacation (i.e. becomes unavailable) when certain conditions are met.
Whenever a server leaves on a vacation, arriving customers are stored in the queue. Once
the server returns, service begins once more. A wide variety of vacation models exists. For
a general overview we refer to Doshi (1986), Takagi (1988) and Tian and Zhang (2006).

The AMQ consists of a single queue and a single virtual server. The virtual server acts
as a device to allocate customers to service sessions (consequently, no processing time is
required). At the start of a service session i, min(Q, ki) customers are served at the virtual
server of the AMQ (i.e. the AMQ has a k-limited service discipline; where k depends on the
service session that is about to start). After service, a vacation is initiated. This vacation
has a deterministic length equal to the difference between the start of the current service
session and the start of the next (i.e. a vacation i has length Ti = Si + Ii). Note that, while
service is instantaneous, the end of a vacation and the start of a new vacation occur at the
same moment in time (i.e. the server is virtually always on vacation). During the vacation,
arrivals are allowed to occur with rate λ. At the start of the next service session, the virtual
server returns from vacation, instantaneously serves another batch of customers and once
more leaves on a vacation of deterministic length.

The AMQ is a rather complex vacation model that has various unique features, rendering
the modeling exercise rather complex (e.g. the length of a vacation as well as the value of
k depends on the state of the system; on the service session that is about to start). To the
best of our knowledge, no model exists in published literature that is able to cope with the
prerequisites imposed by the AMQ.

3.2 The AMQ model

We model the AMQ using a continuous-time Markov chain (CTMC) X = {X (t) : t ≥ 0}.
The CTMC X is a threedimensional stochastic process whose statespace can be represented
by triplets (Q, j, v), where:

• Q : Q ∈ {0, 1, 2, . . .} represents the number of customers in queue,

• j : j ∈ {1, 2, . . . , J} represents the vacation type,

• v : v ∈ {1, 2, . . . , (V + 1)} represents the phase of the vacation process.

For each queue size Q and each vacation type j we have V states in which either an arrival
takes place (thereby incrementing the queue size Q) or a vacation phase is finished (indicating
that the end of the vacation approaches). After finishing the final vacation phase (i.e.
vacation phase V ) of a vacation of type j, one ends up in a state in which the vacation
process is at phase (V + 1). At that point, the vacation of type j is finished. As such, the
server returns from vacation instantaneously serves up to kϕ (where ϕ = j + 1 if j < J and
ϕ = 1 if j = J) customers and leaves on a vacation once more. No arrivals are allowed to
occur during the infinitesimal amount of time during which the system remains in this state.
Instead, a transition takes place towards a state in which: (1) the queue size Q is reduced
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by min(Q, kϕ) customers; (2) the vacation phase v is reset at 1; (3) the vacation type j is
set equal to ϕ. We can define the set of feasible state transitions as follows:

• Upon arrival of a customer (with rate λ), one moves from state (Q, j, v) to state
(Q+ 1, j, v) if v ≤ V .

• Upon finishing a vacation phase v at a vacation j (with rate υj), one moves from state
(Q, j, v) to state (Q, j, v + 1) if v ≤ V .

• Upon finishing a vacation of type j, one moves from state (Q, j, V + 1) to state
(max(0, Q− kϕ), ϕ, 1) (with infinitesimal rate ω).

Using these state transitions, we can construct the infinitesimal generator Q that is associated
with the CTMC X. The infinitesimal generator Q is given by:

Q =



L̂ F 0 0 0 · · ·
B L F 0 0 · · ·
0 B L F 0 · · ·
0 0 B L F · · ·
0 0 0 B L · · ·
· · · · · · · · · · · · · · · . . .


,

where 0 is a matrix of appropriate size containing only zeros and where L̂, L, F and B
are the respective “local”, “forward” and “backward” transition rate matrices. An outline
of these matrices is provided below (s and t represent the queue size at the departure and
arrival state respectively):

L̂ =

s/t 0 1 · · · Qc − 2 Qc − 1

0 L̂∗ F∗ · · · 0 0
1 B∗s,t L∗ · · · 0 0
· · · · · · · · · · · · · · · · · · ,

Qc − 2 B∗s,t B∗s,t · · · L∗ F∗

Qc − 1 B∗s,t B∗s,t · · · B∗s,t L∗

L =

s/t iQc iQc + 1 · · · 2iQc − 2 2iQc − 1
iQc L∗ F∗ · · · 0 0

iQc + 1 B∗s,t L∗ · · · 0 0
· · · · · · · · · · · · · · · · · · ,

2iQc − 2 B∗s,t B∗s,t · · · L∗ F∗

2iQc − 1 B∗s,t B∗s,t · · · B∗s,t L∗

F =

s/t iQc iQc + 1 · · · 2iQc − 2 2iQc − 1
(i− 1)Qc 0 0 · · · 0 0

(i− 1)Qc + 1 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · ,

(i− 1)Qc +Qc − 2 0 0 · · · 0 0
(i− 1)Qc +Qc − 1 F∗ 0 · · · 0 0
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B =
s/t (i− 1)Qc (i− 1)Qc + 1 · · · (i− 1)Qc +Qc − 2 (i− 1)Qc +Qc − 1
iQc B∗s,t B∗s,t · · · B∗s,t B∗s,t

iQc + 1 0 B∗s,t · · · B∗s,t B∗s,t
· · · · · · · · · · · · · · · · · · ,

2iQc − 2 0 0 · · · B∗s,t B∗s,t
2iQc − 1 0 0 · · · 0 B∗s,t

where Qc = max(kj); ∀j ∈ {1, 2, . . . , J}. Qc is also referred to as the critical queue size
and indicates the maximum decrease of queue size when performing a backward transition
(i.e. no more than Qc customers may be removed from the queue at the end of any vacation
j; j ∈ {1, 2, . . . , J}). The matrices L̂∗, L∗, F∗ and B∗s,t are given by (u and w represents the
vacation type of the departure and arrival state respectively)

L̂∗ =

u/w 1 2 · · · J − 1 J
1 Υu Ωs,t,w · · · 0 0
2 0 Υu · · · 0 0
· · · · · · · · · · · · · · · · · · ,
J − 1 0 0 · · · Υu Ωs,t,w

J Ωs,t,w 0 · · · 0 Υu

L∗ =

u/w 1 2 · · · J − 1 J
1 Υu 0 · · · 0 0
2 0 Υu · · · 0 0
· · · · · · · · · · · · · · · · · · ,
J − 1 0 0 · · · Υu 0
J 0 0 · · · 0 Υu

F∗ =

u/w 1 2 · · · J − 1 J
1 Λ 0 · · · 0 0
2 0 Λ · · · 0 0
· · · · · · · · · · · · · · · · · · ,
J − 1 0 0 · · · Λ 0
J 0 0 · · · 0 Λ

B∗s,t =

u/w 1 2 · · · J − 1 J
1 0 Ωs,t,w · · · 0 0
2 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · .
J − 1 0 0 · · · 0 Ωs,t,w

J Ωs,t,w 0 · · · 0 0
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The matrices Υu, Λ and Ωs,t,w are the characterizing matrices of the infinitesimal generator
Q. They are presented below

Υu =

v 1 2 · · · V V + 1
1 −λ− υu υu · · · 0 0
2 0 −λ− υu · · · 0 0
· · · · · · · · · · · · · · · · · · ,
V 0 0 · · · −λ− υu υu

V + 1 0 0 · · · 0 −ω

Λ =

v 1 2 · · · V V + 1
1 λ 0 · · · 0 0
2 0 λ · · · 0 0
· · · · · · · · · · · · · · · · · · ,
V 0 0 · · · λ 0

V + 1 0 0 · · · 0 0

Ωs,t,w =

v 1 2 · · · V V + 1
1 0 0 · · · 0 0
2 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · ,
V 0 0 · · · 0 0

V + 1 ωδs,t,w 0 · · · 0 0

where δs,t,w may be defined as:

δs,t,w =


1 if (s− t) = kw; ∀t > 0,
1 if s ≤ kw; ∀t = 0,
0 otherwise.

(5)

One can observe that the infinitesimal generator Q is endowed with a special repetitive
structure. This repetitive structure may be exploited when deriving the stationary distribu-
tion π of the corresponding CTMC X. To obtain π we adopt matrix analytical techniques.
Pioneered by Neuts (1981) several decades ago, matrix analytical techniques have attracted
the attention of many researchers in the queueing field. For an overview of literature and an
introduction to matrix analytical techniques, refer to Latouche and Ramaswami (1999), Os-
ogami (2005) and Bini, Meini, Steffe and Van Houdt (2006) among others. In short, matrix
analytical techniques allow the (numerically) exact analysis of a wide variety of queueing
systems featuring some repetitive structure (more specifically, M/G/1, GI/M/1 and quasi-
birth-death (QBD) processes). The AMQ may be considered a QBD process and may be
solved using the techniques that apply for M/G/1 as well as GI/M/1 processes. Obtaining
the stationary distribution of a QBD process involves the computation of an auxiliary matrix
R. R may be obtained as the solution of the quadratic equation (Latouche and Ramaswami
1999):

F + R · L + R2 ·B = 0. (6)
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The stationary probability vector π(0) may be obtained by solving the following system:

π(0)
(
L̂ + RB

)
= 0, (7)

π(0) (I−R)−1 e = 1, (8)

whereas the stationary distribution π is obtained through the recursive relationship:

π(i) = π(0) ·Ri; ∀i ≥ 1. (9)

Where:

• π(i) is the vector of stationary probabilities associated with a queue size s : s ∈
{(i− 1)Qc, . . . , iQc}. More specifically, π(i) holds the stationary probabilities of states
(s, j, v) : ∀s ∈ {(i− 1)Qc, . . . , iQc} ∧ ∀j ∈ {1, 2, . . . , J} ∧ ∀v ∈ {1, 2, . . . , V + 1}.

• I is an identity matrix of appropriate dimension.

• e is a vector of ones of appropriate size.

From π(i) we obtain π (Q, j, v), the probability of having Q customers in queue at a
vacation of type j at vacation phase v. We use π (Q, j, v) to determine: (1) the stationary
distribution πSFQ,j (Q) of the number of customers to be served at the SFQ during a service
session of type j; (2) the stationary distribution πAMQ,j (Q) of the number of customers in
queue during a vacation of type j.

The number of customers to be served at a service session ϕ depends on the stationary
probability of states (Q, j, V + 1). The stationary distribution πSFQ,ϕ (Q) may be obtained
as follows:

πSFQ,ϕ (Q) =
π (Q, j, V + 1)
∞∑
Q=0

π (Q, j, V + 1)
; ∀Q < kϕ, (10)

πSFQ,ϕ (kϕ) =

∞∑
Q=kϕ

π (Q, j, V + 1)

∞∑
Q=0

π (Q, j, V + 1)
. (11)

The number of customers in queue during a vacation of type j is associated with the
stationary distribution of states (Q, j, v) : v ∈ {1, 2, . . . , V }. After rescaling we obtain:

πAMQ,j (Q) =

V∑
v=1

π (Q, j, v)

∞∑
Q=0

V∑
v=1

π (Q, j, v)

. (12)

Using πAMQ,j (Q) we can compute the average number of customers in queue at the AMQ
during a service session of type j as follows:

QAMQ,j =
∞∑
Q=0

QπAMQ,j (Q) . (13)
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The probability of finding oneself at a vacation of type j equals:

pj =
Tj
J∑
j=1

Tj

. (14)

As such, the average number of customers in queue at the AMQ equals:

QAMQ =
J∑
j=1

pjQAMQ,j. (15)

Using Little’s law, we can compute the expected waiting time of a customer at the AMQ:

E [WAMQ] =
QAMQ

λ
. (16)

4 Service facility queueing system

In this section we develop the SFQ. We provide a short overview of literature on AS. Next
we define the problem. A final subsection presents the model itself.

4.1 Appointment system literature review

AS have been studied extensively during the past 50 years. Excellent overviews of literature
may be found with Mondschein and Weintraub (2003) and Cayirli (2003). In short, AS deal
with the operational issue of scheduling a number of customers as to optimize some measure
of performance (e.g. customer waiting time, staff overtime, . . . ). In the most simple case, all
customers arrive punctually at their appointment dates and receive service at a single server
workstation. Complexity is introduced in the form of so-called environmental variables. An
extensive overview of such environmental variables is provided in Cayirli (2003). Examples
of environmental variables include customer unpunctuality, the number of customer classes
and the number of servers.

In AS literature, customers are either scheduled using some appointment scheduling
rule or a procedure is developed to determine the (optimal) arrival times of customers at
the service facility in order to optimize some set of performance measures (examples of the
latter category may be found with Weiss (1990), Liao, Pegden and Roshenshine (1993), Wang
(1997), Vanden Bosch and Dietz (2000; 2001) among others). With respect to appointment
scheduling rules, comprehensive comparisons of various appointment scheduling rules are
available with Ho and Lau (1992; 1999) and Mondschein et al. (2003). In the remainder of
this work, we will focus only on appointment scheduling rules.
Appointment scheduling rules can be described in terms of:

• block size (nil); indicating the number of customers scheduled in block l during service
session i,

• initial block size (ni1); indicating the number of customers given an appointment date
at the start of service session i,
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Figure 4: Appointment scheduling rules

• appointment interval (ail); indicating the interval between two successive appointments
during service session i.

Note that all but a few AS reported in literature study a single service session. Vanden
Bosch & Dietz (2000 and 2001) are one of the few exceptions to study an AS spanning over
multiple service sessions. Each service session i of length Si is divided in a number of blocks
B; ts and te indicating the start of the first and the end of the last block respectively. At
the beginning of each block b; b ∈ {1, 2, . . . , B}, a number of customers nb is scheduled
to arrive. Figure 4 provides further insight. Many appointment scheduling rules start a
service session with an initial block of a few customers (who serve as a buffer to minimize
server idle time in the occasion of customers arriving late or failing to show up) and constant
appointment intervals. When ni1 = 2, nil = 1, ail = 1/µ, the appointment scheduling rule is
referred to as the Bailey-Welch rule. Another popular appointment scheduling rule is the
block appointment rule in which all customers are assigned to arrive in the initial block.
Notwithstanding their simplicity, the Bailey-Welch and block appointment rule are well-
known and widely implemented in practice.

4.2 Problem definition

In this article, we model the SFQ as an AS using the block appointment rule. We assume no
environmental variables to be in effect. As such, all customers are present at the start of their
assigned service session. Service starts at the beginning of a service session and continues
uninterruptedly until all customers have been served. Under such a policy, customer waiting
time is maximized while server idle time is minimized.

The SFQ models the service process of customers at a single service session. While the
service process is stochastic, there exists a probability that overtime has to be performed.
Overtime is the time a server has to work in excess of a certain time capacity Oj in order to
serve all customers at a service session of type j. We define Oj as follows:

Oj =
kj
µ
. (17)
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In the literature on AS, the concept of overtime is regularly encountered. However, AS are
generally limited to the study of a single service session. Research relating to overtime in a
more general setting (i.e. a queueing system) is rather rare. Bitran and Tirupati (1991) study
the subject in the context of a traditional queueing system. Their results however, remain
limited to approximations and are focussed on systems that are not appointment-driven.

4.3 The SFQ model

The SFQ models the service process of Q customers at a service session j. The measures of
interest are: (1) the expected waiting time of an individual customer at the SFQ (this does
not include processing itself); (2) the probability of the server to perform overtime; (3) the
expected amount of overtime performed.

The expected waiting time of an individual customer at the SFQ (given a service session
of type j and a number of customers to be served Q) is given by (Lambrecht et al. 1998):

E [WSFQ,j,Q] =
Q− 1

2µ
. (18)

In order to compute πo (j,Q) (i.e. the probability that the server performs overtime at a
vacation of type j when Q customers require service) we require the distribution of the total
service time at service session j. The service processes of Q individual customers are assumed
to follow i.i.d. gamma distributions of parameters α and θ. While the service process of the
Q customers occurs uninterruptedly, the total service time distribution is the convolution
of Q i.i.d. gamma distributions of parameters α and θ, yielding a gamma distribution of
parameters Qα and θ (Dudewicz and Mishra 1988). The cumulative distribution function
(cdf) of the total service time is given by:

F (x,Qα, θ) =
γ (Qα, x/θ)

Γ (Qα)
. (19)

Where γ represents the incomplete gamma function. Using the cdf of the total service time,
we obtain the probability of the server to perform overtime at a service session of type j
when Q customers require service:

πo (j,Q) = 1− F (Oj, Qα, θ) . (20)

The expected amount of overtime performed at a service session of type j with Q cus-
tomers requiring service, is determined using the truncated distribution of f (x,Qα, θ). More
specifically, the expected amount of overtime equals:

1

µo (j,Q)
=

∞∫
Oj

(x−Oj) f (x,Qα, θ) dx. (21)

Which can be simplified to the following closed form formula:

1

µo (j,Q)
=

[−Ojγ (Qα, Oj/θ)] +

[
OQα
j

(
Oj
θ

)−Qα
θ1−Qαγ (1 +Qα, Oj/θ)

]
Γ (Qα)

. (22)
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5 Appointment driven queueing system

In this section we combine both the AMQ and the SFQ to create a single model, the
appointment-driven queueing system, that is able to study an appointment-driven system. A
first section presents the appointment-driven queueing system. In a second section we return
to the numerical example first presented in section 2.1 and solve it using the appointment-
driven queueing system.

5.1 The appointment-driven queueing system

From the AMQ we have obtained πSFQ,j (Q), the stationary distribution of the number of
customers to be served at the SFQ during a service session of type j. We will use the
stationary distribution πSFQ,j (Q) as a weighing factor for the results obtained at the SFQ
corresponding to Q customers served at a service session j. As such we obtain general results
at the appointment-driven queueing system (i.e. average customer waiting time at the service
facility, probability of server overtime and the expected amount of overtime performed).

Define E [WSFQ,j], the average waiting time of a customer at the service facility during
a service session of type j. E [WSFQ,j] may be obtained as follows:

E [WSFQ,j] =

kj∑
Q=0

πSFQ,j (Q)E [WSFQ,j,Q] (23)

In addition, the average number of customers present at the start of a service session of type
j may be defined as:

QSFQ,j =

kj∑
Q=0

πSFQ,j (Q)Q. (24)

For a given service session j, the average number of customers served will serve as the
weighing factor of the average waiting time (i.e. the results of a service session in which a lot
of customers receive service has a larger impact on the average waiting time of a customer in
overall). We obtain the average waiting time of a customer at the service facility as follows:

E [WSFQ] =

J∑
j=1

E [WSFQ,j]QSFQ,j

J∑
j=1

QSFQ,j

. (25)

With respect to the probability of the server working overtime at a service session of type
j, we have:

πo (j) =

kj∑
Q=0

πSFQ,j (Q) πo (j,Q) . (26)

While there are J service sessions in a service cycle, the probability of randomly picking a
service session j from the set of service sessions equals:

qj =
1

J
. (27)
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Therefore the total probability of the server to work overtime is given by:

πo =
J∑
j=1

qjπo (j) . (28)

Analogously we have that the expected amount of overtime at a service session of type j
may be expressed as:

1

µo (j)
=

kj∑
Q=0

πSFQ,j (Q)
1

µo (j,Q)
. (29)

The total expected amount of overtime performed at the server equals:

1

µo
=

J∑
j=1

qj
1

µo (j)
. (30)

The total expected waiting time at the AMQ is given in equation 16. Together with
equation 25, 28 and 30, all performance measures of interest at the appointment-driven
system are defined.

5.2 Numerical example

In this section we revisit the setting of the example discussed in section 2.1. In addition,
assume that on average 8 patients make an appointment at the doctor’s office every week
(i.e. patients arrive at a rate of λ = 1/1,260 per minute during a service cycle of length
T = 10, 080 minutes). While 12 patients are allowed to receive service in a single service
cycle, the utilization rate of the doctor’s office may be expressed as follows:

ρ = λ

J∑
j=1

Tj

J∑
j=1

kj

. (31)

Note that all parameters are expressed in minutes unless mentioned otherwise. In our exam-
ple ρ = 2/3. Further assume the service times to follow a gamma distribution of parameters
α = 1.5 and θ = 20. The mean and variance of the service times amount to 1/µ = 30 minutes
and σ2

s = 600 minutes respectively. The squared coefficient of variation is given by C2
s = 2/3.

At this point, we will use the appointment-driven queueing system as developed in the
previous sections to obtain the performance measures of interest. In order to assess the
impact (on the accuracy of the results) of approximating the deterministic vacation times
using an Erlang distribution of V phases, we perform a number of experiments featuring
different values of V . The results of the analysis are presented in Table 2. The simulation
results corresponding to values V : V ∈ {10, 50, 100, 200} clearly demonstrate the validity
of the analytical model. With respect to the accuracy of the model, we compare analytical
results with simulation results when V =∞ (i.e. the simulation was performed using deter-
ministic vacation lengths). One can observe that the appointment-driven queueing system
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Table 2: Results with varying number of vacation phases

V E [WAMQ] E [WSFQ] πo
1
µo

Model Sim Model Sim Model Sim Model Sim
10 5,127 5,125 105.95 105.94 0.198 0.198 10.08 10.08
50 4,440 4,440 106.54 106.56 0.188 0.188 9.60 9.61
100 4,360 4,360 106.67 106.68 0.187 0.186 9.53 9.53
200 4,321 4,320 106.74 106.76 0.186 0.186 9.50 9.51
∞ 4,281 106.82 0.185 9.47

is able to provide very accurate results when assessing strategic performance measures at
the appointment-driven system. When the vacation process is approximated by an Erlang
distribution of 200 phases the results nearly match those obtained in the simulation when de-
terministic vacation lengths were used. Even an Erlang approximation of 50 phases performs
well.

With respect to the server itself, one may observe that in nearly one out of five service
sessions overtime is performed. The total expected amount of overtime encountered amounts
to 9.5 minutes at a service session. These figures are relatively surprising considering the
fact that: (1) the utilization rate of the server only amounts to 2/3; (2) the service process
of customers features low variability (C2

s = 2/3); (3) the AS used minimizes server overtime
(all customers are present at the start of a session, customers are not allowed to arrive late,
unscheduled customers are not allowed to show up, . . . ). These observations illustrate the
importance of assessing overtime in queueing models. Indeed, there is a pressing need for
tools that are able to detect, not only the impact, but also the levers required to minimize
the harmful effects of overtime. An optimization procedure indicating how often a server
should be online, for how long and when, is of great strategic value to any administrator of
an appointment-driven system. The performance measures obtained using the appointment-
driven queueing system developed in this article, provide the tools to construct such an
optimization procedure.

In the optimization procedure, a yet to be defined solution space is to be searched. As
such, it is important to have an indication of the computational effort involved in obtaining
performance measures at the appointment-driven system. With respect to the numerical
example presented above, the computation times corresponding to the different instances are
reported in Table 3. The computations are performed on an AMD Athlon with 2.0 GHz CPU-
speed and 768 MB of RAM. It is clear that more complex real-life problems (featuring larger
values of Qc and J) require a trade-off between precision and model accuracy. Therefore,
improving computational performance is key to the successful implementation of the model
in an optimization procedure fit to assess more complex problems.

6 Conclusion

Appointment-driven systems are widespread in services. Important strategic performance
measures in such systems include the time spent at the waiting list, the waiting time at the
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Table 3: Computation times (in seconds) when varying the number of vacation phases

V CPU time
10 2
50 103
100 726
200 6,907

service facility itself and the overtime performed by the server. These measures of interest
may support strategic decision making concerning server capacity.

In this article we show that traditional queueing models are unable to accurately assess
the performance of appointment-driven systems. The model we develop is fit for purpose
and offers a large amount of modeling freedom. The model is a combination of a vacation
queueing system and an appointment system. The vacation queueing system is a complex
bulk service model with a G-limited service discipline, vacations of deterministic length and
various state dependencies. With respect to the appointment system, the block appointment
rule was selected to manage the arrival of customers at the service facility (it should be
noted that other appointment systems can be modeled as well, however at the price of
increased model complexity). Both systems are combined to create a queueing system that
assesses performance measures of the appointment-driven system. A numerical example
(and corresponding simulation validation study) shows that the model is able to provide
very accurate results.

It is clear that both a vacation model and an appointment system are required to assess
the performance of an appointment-driven system. The study of the vacation model or the
appointment system separately, would only offer a myopic view of the problem setting. On
the one hand, the vacation model is limited to the dynamics of the waiting list and remains
blind to what happens at the service facility itself. Appointment systems on the other hand,
have no input on the number of customers requiring service during a service session. As
such, appointment systems are able to optimize performance at a single service session (i.e.
local) but fail to optimize the service process as a whole (i.e. global, over all service sessions).
The model developed in this article, provides the strategic performance measures required
to perform such a global optimization. More specifically, the model allows the development
of an optimization procedure that may be used (among others) to determine the optimal
frequency of service sessions (e.g. how often and when should a server be online) as well as
the optimal length of these service sessions (e.g. how much time should be spent servicing
customers during a specific service session).

While the presented model provides a new approach to analyze appointment-driven sys-
tems, a considerable amount of work is left to be done. Future extensions of the model
may include: (1) the adoption of multiple servers at the service facility; (2) a general, time-
dependent arrival process using phase type distributions; (3) the use of different appointment
systems that relax the assumptions imposed in this work. In addition, future research should
focus on increasing the computational performance of the analytical model.
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