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Abstract - Healthcare systems differ intrinsically from manufacturing systems.
As such, they require a distinct modeling approach. In this article, we show how
to construct a queueing network of a general class of healthcare systems. In order
to analyze such networks, we use the parametric decomposition approach. Using
this approach the network is decomposed into a set of single queueing systems
which can be analyzed separately. Afterwards, results of these single queueing
systems can be aggregated and general performance measures of the queueing
network are obtained. In addition, we develop new expressions to assess the
impact of service outages and use the queueing network to approximate patient
flow times and to evaluate a number of practical applications.

1 Introduction

Whereas the origin of queueing theory dates back from the beginning of the previous century,
networks of queues have only been studied for a few decades. The pioneering works of Jackson
(1957 and 1963) showed that the stationary distribution of the number of customers in queue
at a queueing network, is a product form of the stationary distributions at the individual
workstations of the network. As a consequence, a queueing network can be decomposed into
separate building blocks (i.e. the individual workstations) that can be analyzed separately to
obtain the solution to the network as a whole. This approach is referred to as the parametric
decomposition approach. The main advantage of the approach is that it enables the study
of, otherwise intractable, complex queueing networks.

Unfortunately, the results obtained by Jackson (1957 and 1963) are only valid in so-
called “Jackson networks” (i.e. queueing networks which assume Poisson arrival and service
processes). When assuming a generalized queueing network (featuring general service and
arrival processes), the product form solution no longer holds. As such, one requires another
means to “link” the separate building blocks of the queueing network. This link is established
in the form of a “linking equation”. More specifically, a linking equation approximates
the stochastic nature of the outgoing stream of customers at one of the workstations of
the network. Using this information, we can assess the stochastic nature of the inflow
of customers at the workstations further down the queueing network. As such, a linking
equation literally “links” the results obtained at the separate workstations to obtain the
solution of the network as a whole. Marshall (1968) was the first to study the stochastic
nature of the outflow of customers at a queueing workstation. Ever since, a wide variety of
linking equations (applicable to a wide variety of settings) has been developed. We refer the
reader to Shanthikumar and Buzacott (1981), Buzacott and Shanthikumar (1985), Bitran
and Tirupati (1988) and Suri, Sanders and Kamath (1993) for a nice review.
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Among others, these results have been extended and implemented in Whitt’s Queueing
Network Analyzer (1983), a powerfull tool that allows the analysis of a wide variety of
complex queueing networks. Other noteworthy contributions to the domain of parametric
decomposition of queueing networks include the works of Whitt (1994, 1995 and 1999a),
Bitran and Tirupati (1988) and Lambrecht, Ivens and Vandaele (1998). A comprehensive
overview of research on queueing networks in general and the parametric decomposition
method in particular may be found with Askin (1993) and Hopp and Spearman (2000).

Queueing networks however, have mainly been studied in a manufacturing setting. Ap-
plications towards services in general and healthcare in particular are rarely seen. One of
the reasons thereof is the difficulty of implementing the peculiarities of a service system
into a methodology that is focussed on manufacturing systems. In what follows we discuss
which problems may arise when modeling complex hospital queueing networks. Next we
demonstrate how to use the parametric decomposition approach to model such queueing
networks. In addition, we develop new expressions to assess the impact of service outages
in a healthcare setting. The queueing network is used to test a variety of practical prob-
lems. More specifically, we demonstrate the impact on system performance resulting from
the reduction of service outages and illustrate the beneficial effects of pooling. Moreover, we
develop an optimization model that enables us to determine the optimal number of patients
to be treated during a service session (e.g. a consultation time block). Finally we present
some conclusions.

2 Problem Description

An important feature of healthcare processes (or services in general) is that the demand for
resources is to a large extent unscheduled. As a consequence, there is a permanent mismatch
between the demand for a treatment and the available capacity. Moreover, timely care is
very important so interrupts are common in healthcare processes (the sense of urgency is
almost always present). No wonder that healthcare is riddled with delays. No need to
come up with a convincing example, we have all experienced that phenomenon. Delays are
highly undesirable, not only from a psychological point of view (patient satisfaction) but also
from an economic point of view. Government reimbursement systems are more and more
based on a Justified Length of Stay (JLoS) system. DRG’s (Diagnosis Related Groups) are
characterized by a minimum and maximum length of stay (depending on parameters such
as severity of the illness, age of the patient, . . . ). If a patient is dismissed before the JLoS
is over, the hospital still collects a full reimbursement. On the other hand, if the patient
remains in care for a period which exceeds the limit of the JLoS, the hospital has to pay for
the extra costs involved. The JLoS of a DRG is determined in function of a national average
length of stay. The system stimulates hospitals to continuously improve their performance.
Moreover, improper scheduling and malfunctioning logistical systems cause lengths of stay
that are too long. Insurance companies may reject reimbursement of these “denied days”
because the delay is not medically necessary Hall, Belson, Muralli and Dessouky (2006).
Delays also create a “hidden” hospital in analogy with the hidden company. In other words,
such a hospital creates wasteful overhead.

Hall (2006) coined the term patient flow. It represents the ability of the healthcare sys-
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tem to serve patients quickly, reliably and efficiently as they move through stages of care.
Queue and delay analysis can produce dramatic improvements in medical performance, pa-
tient satisfaction and cost efficiency of healthcare. Healthcare systems can be represented
as a complex queueing network. The queueing models are helpful to determine the capacity
levels (and the allocation of capacity) needed to respond to demands in a timely fashion
(minimizing the delay). There is a demand side (the patient mix and the associated variabil-
ity in the arrival stream) and a supply side (the hospital resources such as surgeons, nurses,
operating rooms, waiting rooms, recovery, imaging machines, laboratories) in any healthcare
process. Moreover, both demand and supply are inherently stochastic. This stochastic na-
ture creates disturbances and outages during the process. It is the combination of capacity
analysis and variability that makes queueing theory so attractive. The major objective is to
identify factors influencing the flow time of patients, to identify levers of improvement and
to analyze trade-offs. In this article we try to address some of the issues mentioned above.

Queueing models have been applied in numerous industrial settings and service industries.
The number of applications in healthcare, however, is relatively small. This is probably due
to a number of unique healthcare related features that make queueing problems particularly
difficult to solve. In this section, we will review these features and where appropriate we will
shortly discuss the methodological impact.

Before we dig into this issue, let’s first discuss two important modeling issues in health-
care: the performance measures and the issue of pooled capacity.

The performance measures in healthcare systems focus on internal and external delays.
The internal delay refers to the sojourn time of patients inside the hospital before treatment.
The external delay refers to the phenomenon of waiting lists. Manufacturing systems may
buffer with finished goods inventory, service systems rely more on time buffers and capacity
buffers. Another important performance measure is related to the target occupancy (utiliza-
tion) levels of resources. Average occupancy targets are often preferred by government and
other institutional agents. Hereby, higher occupancy levels are preferred, but this results in
longer delays. We are often confronted with conflicting objectives. Instead of determining
capacity needs based on (target) occupancy levels, it is preferable to focus on delays. The
key issue in delay has to do with the tail probability of the waiting time. The tail probability
refers to the probability that a patient has to wait more than a specified time interval. Ca-
pacity needs (e.g. staffing) of an emergency department should be based on an upper bound
on the fraction of patients who experience a delay of more than a specific time interval before
receiving care from a physician (Green and Soares, 2007). The second modeling issue has
to do with pooling. In general, pooling refers to the phenomenon that available inventory
or capacity is shared among various sources of demand (well known examples are location
pooling, commonality or flexible capacity). Pooling is based on the principle of aggregation
and mostly comes down to the fact that we can handle uncertainty with less inventory or
capacity. In healthcare systems, resources are usually dedicated to specific patient types,
hospitals have separate units or departments by diagnostic type and bed flexibility is almost
non-existing. As a result, pooling is absent. This explains the fact that most queueing
models reported in the literature are dealing with parts of the hospital. Queueing models,
however, can be used to model hospital wide systems and to evaluate the benefits of greater
versus less specialization of care units or other resources (scanners, labs, . . . ).

Let’s now turn to a number of unique healthcare related features making queueing models
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in healthcare difficult to model and to solve.

Re-entry of patients and stochastic routings During consultation, patients may be
routed to different facilities. The routing of a patient through hospital facilities is not
deterministic. Instead, during the diagnosis stage there is a probabilistic routing. Moreover,
patients require in many cases several consultations before surgery. Even after a patient is
discharged from the hospital after surgery and recovery, the patient is subjected to a number
of follow-up consultations. In other words, the queueing model must take care of re-entry of
patients, creating additional work on top of the new patients. In most cases, the re-entry is
correlated.

Service sessions for consultation and surgery In most queueing models time is con-
sidered as continuous and events are spread out over this continuous time scale. In services
in general and in healthcare more specifically, resources are not continuously available. In-
stead, time is divided into “service sessions” for consultation (e.g. twice a week) or surgery
(e.g. one day per week). Consequently we have to focus on service processes in which ser-
vice takes place during predefined service sessions. Vacation models observe the queueing
behavior of such systems in which servers are available during certain time intervals and are
on “vacation” during the other time intervals.

Capacity related issues Hospitals operate within strict business restrictions. Resources
are usually very scarce and consequently hospitals operate under high capacity utilization
conditions. The so-called heavy traffic conditions are present. Heavy traffic conditions as-
sume that all stations in the network are critically loaded. In such an environment, inaccurate
results have a large impact on resulting performance measures.

Modeling of absences, disturbances and interruptions An important determinant
of the flow time is variability. We distinguish two types of variability. Natural variability is
variability that is inherent to the system process. Natural variability is much more substantial
in healthcare as compared to manufacturing environments. Second, we have variability that
can be related or assigned to a specific external cause. This variability is caused by unplanned
absences of medical staff or interruptions during service operations. It is well known that
variability induces waiting time. As a result the time available during consultation is often
exceeded. This in turn is remedied by allowing overtime. Unfortunately, overtime modeling
is a non-trivial issue in queueing.

3 A hospital queueing system

The features discussed in the previous section considerably complicate the modeling exercise.
In order to demonstrate how to implement the features in a queueing model, we use an
example hospital queueing system. The example concerns a typical hospital department
involving consultation, surgery and recovery. The example we use throughout this paper is
inspired by a real life case of the orthopedic department of the Middelheim hospital (Antwerp,
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Belgium) (Creemers and Lambrecht, 2007). We omit in this paper all practical data collection
details of the case. We now and then provide numerical data to give the reader an idea of
the problem dimension. In our example, the department employs six surgeons. Each of the
surgeons is assigned a certain number of patients and no patient crossover between surgeons
is assumed to take place. The base case deals in other words with the non-pooled capacity.
Recovery occurs in an internal ward, an external ward or in the day hospital (depending on
the disorder the patient is suffering from). In each of the wards 25 beds are reserved for
patients of the hospital department under study. The capacity structure of the department
is illustrated in Figure 1.
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Figure 1: Hospital queueing network

Notwithstanding the fact that every patient is unique, we impose some general assump-
tions regarding the treatment process of a patient visiting the department. More specifically,
we assume that every patient starts the treatment process with one or more consultations.
Next, surgery is performed and a number of follow-up consultations is initiated. Finally the
treatment process of a patient finishes and the patient leaves the hospital system. We assume
that only elective surgery takes place and that the consultation process is appointment-based.
Remark that it is possible to specify other patient routings (e.g. patients who refuse surgery,
patients that do not longer need recovery, . . . ). In this example, however, we make use of a
simple patient routing structure in order to preserve the transparency of the model.

With respect to the performance measures, we are interested in the total flow time of a
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patient at a workstation (i.e. consultation, surgery or recovery). We define the flow time
as the total waiting time plus the processing time. With respect to the waiting time of a
patient, a distinction is made between the internal waiting time and the external waiting
time (Vissers, Bertrand and De Vries (2001) and Hall et al. (2006)). More specifically,
the internal waiting time is the time spent inside the hospital prior to receiving service (at
any of the workstations). The external waiting time is the time between the making of an
appointment and the arrival of a patient at the hospital. The external waiting time can
also be related to the ”waiting list” phenomenon. As such, the total flow time of a patient
consists of: (1) the external waiting time; (2) the internal waiting time; (3) the processing
time. In the remainder of this text we will use E [W ] to denote the total flow time of a
patient.

The data collection may be described in the following way (see also Figure 1). We
start with a patient population (in our case we collected data on the consultation, surgery
and recovery process of 3,300 patients) and divide it into groups of similar DRG’s. We
construct 18 DRG groups and use index k, k ∈ {1, 2, . . . , K} for further identification (refer
to Roth and Van Dierdonck (1995) and van Merode, Groothuis and Hasman (2004) for a
detailed treatment on patient classification methodology). Next, the patients are assigned
an individual surgeon (identified using index g, g ∈ {1, 2, . . . , G}). Surgeons as well as
recovery wards may be considered as hospital resources. We use index i, i ∈ {1, 2, . . . , I} to
identify these resources. The surgeons perform both consultation (i ∈ {1, 2, . . . , 6}) as well
as surgery (i ∈ {7, 8, . . . , 12}) tasks. Recovery takes place at the day hospital (i = 13), the
internal ward (i = 14) or the external ward (i = 15).

In what follows we develop the queueing model. First we provide the mathematical
derivations required to obtain the arrival and natural process times. Next, we adapt the
model to include the effects of service outages, the availability of workstations and the
characteristics of the aggregate arrival process.

3.1 Modeling arrival rate and natural service times

The queueing model of the hospital department may be presented as a network of 12 G/G/1
workstations (six surgeons performing both consultation and surgery) and 3 G/G/m work-
stations (the recovery wards). The network is an open re-entry network with stochastic
routings and is modeled using the principles of the parametric decomposition approach.
While other approaches are available (e.g. Brownian motion queueing models), a previous
study has shown that the parametric decomposition approach works best when modeling
complex hospital systems (Creemers et al., 2007).

The queue discipline adhered to at each of the stations is FCFS. Any variation in the
arrival of patients (e.g. the early, late, unannounced or not showing up of patients) is
presumed to be absorbed in the variance of the arrival process. The model assumes infinite
buffers to exist in front of every queue. Realizing that the buffers in front of the consultation
and surgery workstation correspond to their respective waiting lists, it would be incorrect to
restrain them in size. In real life, if patients contact the hospital to make an appointment
for a consultation or a surgery, they will be issued an appointment date no matter how
far ahead in time this date might be (i.e. we assume patients not to display any balking-
or reneging-behavior when arriving or abiding at the queue). Hence buffer capacities are
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virtually unlimited. With respect to the recovery wards, one might argue that queue capacity
is in fact limited. However, there are several reasons that are able to question this assertion.
Next to rendering the model highly intractable, finite buffers do not necessarily correspond
to reality since shortages of bed capacity at the wards are solved at the local level and in
general do not prolong the sojourn time of a patient (this of course presumes the presence
of unoccupied beds somewhere in the hospital). Therefore we will assume infinite buffers
at all stages of the treatment process. Considering the multiclass re-entry environment of
the queueing network, aggregation of the arrival and service process is required in order to
perform a decomposition-based queueing analysis.

More formally, let i (i ∈ {1, . . . , I}) denote the workstation in the network, let k (k ∈
{1, . . . , K}) denote the DRG group a patient belongs to and let g (g ∈ {1, . . . , G}) denote
the surgeon a patient is assigned to. As such, we have KG classes of patients visiting a set of
I workstations. Let the pair (k, g) denote the class of a patient (i.e. a patient of class (k, g) is
assigned a surgeon g and belongs to DRG group k). Patients belonging to different classes are
allowed to differ in terms of interarrival times, service times and routing. Assume interarrival
times and service times of patients to be i.i.d. if they belong to one and the same class and
assume them to be independently (but not necessarily identically) distributed otherwise.
Let ηi(k,g) denote the external arrival rate of a class (k, g) patient at workstation i (remark
that external arrivals are only assumed to take place at the consultation workstations). The
aggregate external arrival rate at a workstation i equals:

ηi =
K∑
k=1

G∑
g=1

ηi(k,g). (1)

Note that expression 1 is a general expression, most of the time a workstation will be uniquely
assigned to a single surgeon, making the summation over g redundant.

We assume that the interarrival times of the external arrivals are exponentially dis-
tributed. Such an assumption poses only a slight restriction on the accuracy of the model
while it has been shown by Palm (1943) and Khinchin (1960) that the sum of a large num-
bers of independent renewal processes (i.e. the arrival processes of the different classes of
patients) will tend to a Poisson process. Considering the multitude of classes of patients, the
approximation of the aggregate external arrival process by means of a Poisson process should
be accurate. In addition, Lariviere and Van Mieghem (2004) showed that the assumption of
exponential interarrival times is reasonable in many service systems.

Let γi(k,g) denote the expected number of visits a class (k, g) patient will make to work-
station i (remark that only the consultation workstations are assumed to be visited more
than once). The aggregate arrival rate of patients at the consultation level equals:

λi =
K∑
k=1

G∑
g=1

ηi(k,g)γi(k,g), ∀i ∈ {1, 2, . . . , 6} . (2)

Note that in contrast to the aggregate external arrival rate, which was assumed to be Poisson-
distributed, the aggregate arrival rate (at each of the workstations) is allowed to follow a
general distribution. Further define the routing matrix R in which the elements rij indicate
the probability of a patient to travel from station i to station j after service completion

7

http://dx.doi.org/10.1007/978-1-4419-6472-4_18
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1007/978-1-4419-6472-4 18 • www.stefancreemers.be • info@stefancreemers.be

at station i. Adhering to standard conventions, we establish a node (of index i = 0) from
which external arrivals originate and which also serves as a sink for patients leaving the
hospital system. Let ri0 indicate the probability of leaving the system when departing from
station i. Conversely r0i implies the probability of an external arrival occurring at station i.
The probabilities rij can be expressed as the the proportion of the arrivals at station i that
travel towards station j. When assuming the stability of the queueing network, the law of
conservation of flows (what comes in, must go out) dictates:

ri0 = r0i =
ηi
λi
∀i ∈ {1, 2, . . . , 6} . (3)

With respect to the surgery workstations, each patient visiting the hospital department is
subjected to surgery exactly once. As such, one can infer that:

λi = ηi, ∀i ∈ {7, 8, . . . , 12} . (4)

Hence the probability of transition from the consultation to the surgery level may be defined
as:

rij =
ηi
λi
, ∀i ∈ {1, 2, . . . , 6} , j = i+ 6. (5)

Finally, at the consultation level, the probability of re-entry equals:

rii = 1− (ri0 + rij) = 1− 2ηi
λi
, ∀i ∈ {1, 2, . . . , 6} , j = i+ 6. (6)

The routing probabilities of transferring from a surgery workstation i, i ∈ {7, 8, . . . , 12}
towards a recovery ward j, j ∈ {13, 14, 15} is obtained as follows:

rij =
λ
(i)
j

λi
, ∀i ∈ {7, 8, . . . , 12} , ∀j ∈ {13, 14, 15} , (7)

where λ
(i)
j is the empirically observed arrival rate of patients at recovery workstation j, j ∈

{13, 14, 15} originating from surgery workstation i, i ∈ {7, 8, . . . , 12}. As such, the arrival
rates at recovery equal:

λj =
12∑
i=7

λ
(i)
j , ∀j ∈ {13, 14, 15} . (8)

From this we obtain:

rij =
λ
(j+6)
i

λi
, ∀i ∈ {13, 14, 15} , ∀j ∈ {1, 2, . . . , 6} . (9)

All other routing probabilities stem directly from the structure of the model. A schematic
summary of the routing matrix R is presented in Table 1.
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Table 1: Schematic summary of the routing matrix R
i / j 0 1-6 7-12 13-15

0 0
ηj
λj

0 0

1-6 ηi
λi

δij

(
1− 2ηi

λi

)
δij

(
ηi
λi

)
0

7-12 0 0 0
λ
(i)
j

λi

13-15 0
λ
(j+6)
i

λi
0 0

Note that (δij = 1) if at least one of the patient classes travels from station i to station
j and (δij = 0) otherwise.

Remark that other routing structures give rise to other routing probabilities. The routing
structure and corresponding equations discussed in this section are only valid under the
previously imposed assumptions concerning patient flow.

With respect to the service times, let fi(k,g) (x) denote the natural service time proba-
bility density function of a class (k, g) patient visiting workstation i. Have 1

νi(k,g)
and σ2

νi(k,g)

represent the average natural service time for a class (k, g) patient at workstation i and its
variance respectively. The natural process time excludes random interruptions, absences and
any other external influence. Assume service times of different classes to be independent but
not necessarily identically distributed. The probability that a randomly picked unit in front

of the workstation is of class (k, g) is given by
λi(k,g)
λi

, where λi(k,g) is the total arrival rate
of class (k, g) patients at workstation i. Define the probability function of the aggregate
natural service times at station i as follows:

fi (x) =
K∑
k=1

G∑
g=1

λi(k,g)
λi

fi(k,g) (x) . (10)

As a result the average natural service time requirement of a unit in front of the workstation
amounts to:

1

νi
=

K∑
k=1

G∑
g=1

λi(k,g)
λi

1

νi(k,g)
. (11)

When observing the variance of the aggregate natural service process, one can deduce that:

σ2
νi

=
K∑
k=1

G∑
g=1

λi(k,g)
λi

´ (
x− 1

νi

)2
fi(k,g) (x) dx,

= − 1
ν2i

+
K∑
k=1

G∑
g=1

λi(k,g)
λi

(
σ2
νi(k,g)

+ 1
ν2
i(k,g)

)
.

(12)

We refer to σ2
νi

as a measure of the natural variability of the aggregate process times at
workstation i. The same result was obtained by Whitt (1983) and has widely been adopted
in literature (Whitt (1999b) and Haskose, Kingsman and Worthington (2002)).
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3.2 Variability from preemptive and nonpreemptive outages

With respect to service outages in healthcare, a large body of literature exists. Outages in
a hospital setting have been the subject of discussion in Babes and Sarma (1991), Liu and
Liu (1998a), Chisholm, Collison, Nelson and Cordell (2000) and Chisholm, Dornfeld, Nelson
and Cordell (2001) among others. There is a consensus on the harmful effects of outages
on patient flow times as well as on the quality of service. Outages result in congestion,
unstable schedules and most importantly in overtime for staff members. We refer to Easton
and Goodale (2005) for an excellent treatment of this issue. In this section, we focus on
unplanned absences of medical staff and interruptions during service operations. Unplanned
absences and interruptions during service activities have a major impact on flow times. Doc-
tors and medical staff face various obligations which they have to attend to (making morning
rounds, answering phones, patient check-ups, daily management, . . . ). In addition doctors
often combine a hospital job and private consultation. These phenomena may cause a vari-
able arrival pattern at the hospital (Liu et al., 1998a) and may lead to interruptions during
the treatment process (Chisholm et al. (2000 and 2001) and Easton et al. (2005)). It is
clear that hospital environments are characterized by substantial amounts of variability. As
is argued in the literature (Hopp et al., 2000), variability induces waiting times. While in
service industries variability cannot be countered by means of inventory in the traditional
sense, patients will have to wait until capacity becomes available (Vissers et al. (2001),
Vandaele and De Boeck (2003a) and Sethuraman and Tirupati (2005)). Besides the time
buffer, hospitals often have to rely on a capacity buffer to mitigate the impact of variability
and to maintain required service levels. In order to model service processes liable to outages,
queueing theory proves to be an ideal tool. With respect to service outages and server unre-
liability, we face a vast amount of queueing literature. Surveys on the machine interference
problem and server unreliability may be found in Stecke and Aronson (1985) and Haque and
Armstrong (2007). Unreliable servers are often modeled using vacation models. Over the
past decades, queueing systems with server vacations have received a lot of attention in the
queueing literature. Vacation models observe the queueing behavior of systems in which the
server begins a vacation (i.e. becomes unavailable) when certain conditions are met. For
instance, imagine a doctor’s office that has opening hours on Tuesday afternoons and on
Friday evenings. On Tuesday, after service completion of the last patient, the doctor leaves
on a “vacation” until Friday evening at which time service is resumed. At the end of service
on Friday, a vacation is initiated until next Tuesday afternoon. We illustrate this process in
Figure 2.

Vacation

Service

Vacation

Monday Tuesday Wednesday Thursday

Vacation

Saturday SundayFriday Monday Tuesday

Figure 2: Illustration of a vacation model
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Next to the modeling of planned absences (e.g. a working schedule), vacation models
may also be used to model unplanned server interruptions (e.g. a doctor who is called away
for an emergency). A wide variety of vacation models exists. For a general overview, we refer
to Doshi (1986), Takagi (1988) and Tian and Zhang (2006). In this work, however, we do
not focus on vacation models. Instead, we consider an alternative, more intuitive approach
to model service outages. This approach was first suggested by Hopp and Spearman (2000).
In their work, Hopp and Spearman propose a transformation of the service process times to
account for service outages. The results of Hopp and Spearman are widely accepted in the
literature. In this work, we develop new expressions to model the impact of service outages
that are peculiar to healthcare systems. In what follows, we first discuss the difference
between preemptive and nonpreemptive outages. Next, we provide the means to model
them.

3.2.1 Outages, classification and impact

As was indicated previously, the service process of a patient may be interrupted or postponed.
These outages will increase the natural service times. We call these increased, adjusted
service times, effective processing times. It is the total time “seen” or “experienced” by a
patient at a workstation. The effective process time random variable is of primary interest
to determine flow times.

We distinguish between preemptive and nonpreemptive outages. Preemptive and nonpre-
emptive outages will impact the service process and will give rise to increased levels of traffic
intensity (resulting in the so-called effective utilization rate or effective traffic intensity).

Let us first discuss the nonpreemptive outages. Nonpreemptive outages typically occur
between jobs, rather than during jobs. They occur at the beginning of each service session
(i.e. at the start of a consultation work shift) whenever a doctor or another member of
the medical staff is absent (e.g. due to late arrival). We may refer to such an outage
as unplanned absences and define the mean and variance of the amount of time absent
as 1

µs
and σ2

s respectively (i.e. absence times are allowed to follow a general distribution).

Furthermore we assume an average number of patients (represented by n) to arrive in between
two consecutive absences. This is an important feature of the model. Indeed, n may be
considered as the number of patients in a service session (e.g. a consultation work shift).
Each start of a service session may induce a delay due to an absence. In other words, the
number of patients in a service session is a decision variable and is comparable to a lot sizing
decision. Evaluating different service session sizes (i.e. different values of n) may provide
key managerial insights. We will address this issue in an upcoming section.

Next to nonpreemptive outages, we also allow for preemptive outages to take place.
Preemptive outages occur whenever a doctor is interrupted during a consultation activity.
These interruptions will be modeled in an approach which builds on the tradition set by
Hopp and Spearman (2000). They are characterized by a Mean Time To Interrupt (τf )
and a Mean Time To Resolve (τr). The model presented in Hopp and Spearman (2000)
presumes interrupts to occur only during actual service time. However, in a hospital setting
it is not inconceivable that interrupts take place during the resolve time induced by a previous
interrupt as well. For instance, if the service process of a patient is interrupted by a phone
call, it is still possible for a doctor to be called away for an emergency, to receive another
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call, . . . .
In what follows, we present the main results on nonpreemptive as well as preemptive

outages. In a final subsection, we present results on the joint occurrence of nonpreemptive
and preemptive outages. In order to maintain transparency of the model and of notation,
we impose the following assumptions: (1) service outages only occur at the consultation
level (i.e. only workstations i, i ∈ {1, 2, . . . , 6} are affected); (2) for each of the surgeons,
the impact of outages is identical (i.e. 1

µs
, σ2

s , n, τf and τr remain the same for each of the

workstations at the consultation level).

3.2.2 Nonpreemptive outages

We define a nonpreemptive outage to occur whenever the succession of two events is based
on the number of services performed in between (hence, setups, rework, maintenance, . . . are
all extensions that are able to capitalize on the technique discussed in this section). Applied
to our setting, we have that n patients are treated (on average) in between two consecutive
absence possibilities. Assume that the length of services and absence times does not depend
on the service history (i.e. they are independent of prior services and absence times). The
absence times themselves are distributed following a probability density function fs (x). The
average absence time and its variance are represented by 1

µs
and σ2

s . The service time of the

nth patient includes part service time, part absent time. We refer to the service time of the
nth patient as the combined service time. We illustrate these concepts in Figure 3.

Natural service time patient

Nonpreemptive outage time every nth patient

Combined service time patient

Natural service time

Nonpreemptive outage time

... ... Patient nPatient 2Patient 1 ...

Figure 3: The combined service time

One can consider the services that are preceded by an absent period as a separate class of
patients that has a probability 1

n
of randomly being picked in front of the workstation. The

other services as a whole have a probability
(

(n−1)
n

)
of randomly being picked. Therefore, we

can define the mean aggregate service times including the effect of absence times as follows:

1
υi

=

[(
n−1
n

) K∑
k=1

G∑
g=1

λi(k,g)
λi

´
fi(k,g) (x)xdx

]
+[

1
n

K∑
k=1

G∑
g=1

λi(k,g)
λi

˜
fi(k,g) (x) fs (y) (x+ y) dydx

]
,

= 1
νi

+ 1
nµs

.

(13)
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With respect to the variance of the aggregate service time (including absence times) at the
consultation workstations we develop the following expression:

σ2
υi

=

[(
n−1
n

) K∑
k=1

G∑
g=1

λi(k,g)
λi

´
fi(k,g) (x)

(
x− 1

υi

)2
dx

]
+[

1
n

K∑
k=1

G∑
g=1

λi(k,g)
λi

˜
fi(k,g) (x) fs (y)

(
x+ y − 1

υi

)2
dydx

]
,

= σ2
νi

+ σ2
s

n
+ 1

µ2s

(
n−1
n2

)
.

(14)

The above expression is equivalent to that of Hopp and Spearman (2000) and is valid un-
der the assumption that the combined service times as well as ordinary service times are
independently distributed.

3.2.3 Preemptive outages

We refer to service interruptions as preemptive outages. Doctors being called away on
emergencies, answering phone calls, . . . are typical examples. The average time between
two consecutive interrupts is defined as τf whereas τr refers to the average time it takes to
resolve an interruption. Preemptive outages prove to be more difficult to model while they
occur after the elapsing of a variable amount of time (i.e. a mean time to interrupt τf ),
rather than after a number of patients being processed. Under the assumption that the time
between two consecutive interrupts is exponentially distributed, expressions for mean and
variance have been obtained. With respect to preemptive outages, we make a distinction
between two different scenarios. On the one hand, one might presume preemptive outages
to occur only during actual service time. As such preemptive outages do not take place
during the resolve times induced by previous outages. Remark that this does not imply that
the service process of a single patient cannot be interrupted more than once. On the other
hand, one might assume preemptive outages to occur during resolve times as well (e.g. as
indicated previously, doctors may be be interrupted when already engaged in resolving a
previous interrupt). While this latter instance can be seen as an extension of the former,
we will first discuss outages occurring exclusively during actual service time. Define τr0j as

the resolve time of the jth preemptive outage that occurred during the service process of one
and the same patient. The mean and variance of the resolve times are given by τr and σ2

r .
In addition, resolve times of different outages are assumed to be i.i.d.. The service process
of a patient thus faces the probability of encompassing several interrupts that prolong its
service duration. The service time of a patient (including interrupts) at a workstation i can
be expressed as:

1

ωi
=

1

νi
+

J0∑
j=1

τr0j . (15)

As such, the random variable 1
ωi

incorporates both the natural service time 1
νi

as well as the
resolve times of interrupts that occurred during service. Moreover, J0 denotes the number
of preemptive outages that occurred during the service process of a unit. J0 is a random
variable that follows a Poisson distribution (i.e. we assume the time between two consecutive
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interrupts to be exponentially distributed) and its mean and variance both equal

(
1

(νiτf)

)
.

We face a sum of random variables (the resolve times τr0j ) in which the number of random

variables (the number of interrupts J0), is a random variable itself. Assume that J0 and τr0j
(∀j ∈ N) are i.i.d. variables. In addition assume the mean as well as the variance of τr0j to
be equal for all j ∈ N. Therefore, the mean and variance of the sum of Ji0 random variables
τr0j can be expressed as (Dudewicz and Mishra, 1988):

E [S0] = E [J0]E
[
τr0j

]
, (16)

σ2
S0

= E [J0]σ
2
r + E

[
τr0j

]2
σ2
J0
, (17)

where S0 is the random variable representing the sum of J0 resolve times τr0j . In other words
we have that:

S0 =

J0∑
j=1

τr0j . (18)

The mean and variance of the sum of resolve times can be defined as:

E [S0] =
1

νi

τr
τf
, (19)

σ2
S0

=
1

νi

σ2
r + τ 2r
τf

. (20)

The mean aggregate service time including the effect of interrupts may be expressed as:

E

[
1

ωi

]
=

1

νi

τf + τr
τf

. (21)

This corresponds to the expression presented in Hopp and Spearman (2000) in which the
natural service time is divided by an availability factor in order to incorporate the effect
of interrupts. Next we have a look at the variance of the service times including the effect
of preemptive outages during service time. We start with the approximation of the second
moment:

E

[(
1

ωi

)2
]

=

(
σ2
νi

+
1

ν2i

)(
1 +

τr
τf

)2

+ σ2
S0
. (22)

Using the expression for the second moment we obtain the variance of the service times
including the effect of interrupts:

σ2
ωi

= σ2
νi

(
1 +

τr
τf

)2

+ σ2
S0
. (23)

This expression once more matches the formula derived in Hopp and Spearman (2000). The
above expressions hold if and only if the Poisson-distributed preemptive outages take place
during service itself. In what follows, we relax this assumption and allow for interrupts to
take place during the resolve times induced by previous interrupts.
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In order to approach this problem, we divide the interrupts into different sets. Let l
(l ∈ N) denote the set index. We define τrlj to be the resolve time of the jth interrupt

belonging to the set of index l (i.e. the interrupt is said to be of order l). Without loss
of generality assume that interrupts of order 0 occurred during actual service, interrupts of
order 1 occurred during the resolve times of interrupts of order 0, . . . . In general, interrupts
of order l took place during the resolving of interrupts of order (l − 1). Figure 4 provides
further insight.

Actual (natural) service (l = 0)

First order interrupt (l = 1)

Second order interrupt (l = 2)

Third order interrupt (l = 3)

Interrupt 5

Service completion

Interrupt 4Interrupt 3

Interrupt 2

Interrupt 1

Start of actual service

Figure 4: Interrupted service process of a single patient

In addition define Sl as the sum of resolve times corresponding to interrupts of order l.
We have that:

Sl =

Jl∑
j=0

τrlj , (24)

where Jl is the number of interrupts belonging to the set of index l. Jl follows a Poisson
distribution and its mean and variance equal:

E [Jl] = σ2
Jl

=
1

νiτf

(
τr
τf

)l
. (25)

One can infer that:

E [Sl] =
τr
νiτf

(
τr
τf

)l
, (26)

σ2
Sl

=
1

νiτf

(
τr
τf

)l (
σ2
r + τ 2r

)
. (27)

Using the same reasoning applied previously, one can express the mean aggregate service
time including the effect of all order interrupts as follows:

E

[
1

ωi

]
=

1

νi

τf
τf − τr

. (28)
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Using these parameters, the second moment is expressed as:

E

[(
1

ωi

)2
]

=

(
σ2
νi

+
1

ν2i

)[
1 + 2

τr
τf − τr

+

(
τr

τf − τr

)2
]

+
1

νi

σ2
r + τ 2r
τf − τr

. (29)

As a result, the variance of the service time at a workstation i (including the impact of all
order interrupts) is given by:

σ2
ωi

=
τ 2f σ

2
νi

+ 1
νi

(τf − τr) (σ2
r + τ 2r )

(τf − τr)2
. (30)

3.2.4 Combining preemptive and nonpreemptive outages

In many hospital settings, both preemptive and nonpreemptive outages may surface. While
it is impossible to interrupt the service process in the instance of a nonpreemptive outage
(e.g. a doctor who arrives late), we only consider the case in which both types of outages
cannot occur simultaneously. The average service time incorporating this combined effect at
a workstation i can be expressed as:

1
ψi

=

[(
n−1
n

) K∑
k=1

G∑
g=1

λi(k,g)
λi

´
fif(k,g) (x)xdx

]
+[

1
n

K∑
k=1

G∑
g=1

λi(k,g)
λi

˜
fif(k,g) (x) fs (y) (x+ y) dydx

]
,

= E
[

1
ωi

]
+ 1

nµs
,

(31)

where fif(k,g) (x) is the probability density function of consultation service times of a class
(k, g) patient at a workstation i including the effect of all order interrupts. Its mean and

variance are given by E
[

1
ωi

]
and σ2

ωi
respectively. We refer to 1

ψi
as the effective service time

while it equals the service time experienced by the patient (and as such includes the impact
of outages). The variance of the effective service times at a workstation i may be expressed
as:

σ2
ψi

=

[(
n−1
n

) K∑
k=1

G∑
g=1

λi(k,g)
λi

´
fif(k,g) (x)

(
x− 1

ψi

)2
dx

]
+[

1
n

K∑
k=1

G∑
g=1

λi(k,g)
λi

˜
fif(k,g) (x) fs (y)

(
x+ y − 1

ψi

)2
dydx

]
,

= σ2
ωi

+ σ2
s

n
+ 1

µ2s

(
n−1
n2

)
.

(32)

These results allow us to take service outages into account when assessing hospital perfor-
mance measures.

3.2.5 Including the time availability of workstations

It is well known that many services do not operate continuously over time. Consultation and
surgery typically operate during certain time intervals (service sessions) which means that
only a proportion of the total available time can be used effectively. Vacation models are often
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applied to solve this problem. Another way to handle the problem is to rescale all service
processing times so that they fit a preset uniform time scale. In this study we agreed on a 24
hours per day, 7 days per week time scale (basically because this is the appropriate time scale
for recovery processes). Let Ai denote the availability of workstation i; Ai represents the
available time in proportion to the preset uniform time scale. For instance, if a workstation
operates only 6 hours per day, then the availability equals 25%.

When rescaling the service times established in the previous sections, we obtain the total
effective service times:

1

µi
=

1

Aiψi
,∀i ∈ {1, 2, . . . , 6} , (33)

1

µi
=

1

Aiνi
∀i ∈ {7, 8, . . . , 15} , (34)

σ2
i =

σ2
ψi

A2
i

,∀i ∈ {1, 2, . . . , 6} , (35)

σ2
i =

σ2
νi

A2
i

∀i ∈ {7, 8, . . . , 15} . (36)

The above procedure results in the total effective service times including natural process
time, the effect of outages and the impact of availability of workstations. The mean total
effective service time and its variance can now be used to compute the squared coefficient of
variation of the service times:

C2
si

= σ2
i µ

2
i . (37)

3.2.6 Squared coefficient of variation of the aggregate arrival process

In order to approximate the parameters of the aggregate arrival process, some more chal-
lenging arithmetics are needed. It was pointed out by Albin (1984) that if at least one of
the interarrival time distributions, constituting the arrival process, does not stem from a
Poisson process, the resulting aggregate interarrival times do no longer hold the property of
independence. As a result the analytical analysis of the aggregate arrival process becomes
highly intractable. Therefore approximations will be adopted to assess the variance and,
more important, the squared coefficient of variation of the aggregate arrival process. The
squared coefficients of variation of the aggregate arrivals at the different workstations will
be extracted using a technique which was pioneered by Shanthikumar and Buzacott (1981).
This technique implies the use of a set of linear equations which has to be solved in order to
obtain the squared coefficients of variation of the arrivals. This approach is widely adopted
in literature (Askin, 1993) and was later generalized by Lambrecht et al. (1998). Using the
technique that was outlined in Lambrecht et al. (1998), we are given a set of I equations:

−
I∑
i=1

λir
2
ij(1− ρ2i )C2

ai
+ λjC

2
aj

=
I∑
i=1

λirij(rijρ
2
iC

2
si

+ 1− rij) + ηjC
2
aηj
, (38)

where ηj and C2
aηj

denote the rate and squared coefficient of variation of the aggregate

external arrival process at station j respectively. In addition, ρi represents the effective
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traffic intensity at workstation i and equals λi
µi

. While all elements except the I squared
coefficients of variation are known, we are presented with a system of I equations yielding
I unknowns. Solving this set of linear equations provides us with the I unknown squared
coefficients of variation (i.e. C2

ai
;∀i ∈ {1, . . . , I}).

With all model parameters firmly defined, we now have a solid base to carry out the
performance evaluation of the hospital department. In the upcoming section we discuss a
numerical example of the model presented above and provide some practical applications.

4 Applications

In this section, we discuss a numerical example using the queueing model described in the
previous section. Next, we illustrate the devastating impact of service interruptions on
patient flow times. Subsequently, we show the potential gains obtained by pooling hospital
resources. Finally, we present an optimization model to determine the optimal number of
patients to be treated during a service session.

4.1 Numerical example

The numerical example presented in this section builds on data gathered at the orthopedic
department of the Middelheim hospital in Antwerpen (Belgium). Using these empirical data
as inputs, the flow time of patients at the hospital department may be assessed using so-
called flow time expressions. A variety of flow time expressions are available in the queueing
literature. A previous study has shown the Kingman equation to yield accurate results when
assessing the flow times of patients in complex hospital systems (Creemers et al., 2007). As
such, in the remainder of this article, we will use the Kingman equation to determine patient
flow times. With respect to the Kingman equation, one can define the expected flow time of
a patient at workstation i as follows (Hopp et al., 2000):

E [Wi] =

(
C2
ai

+ C2
si

2

)ρ√2(mi+1)−1

i

mi (1− ρi)

 1

µi
+

1

µi
, (39)

where mi denotes the number of parallel servers at workstation i (mi = 25 ∀i ∈ {13, 14, 15}).
If only a single server is present (i.e. at workstations i, i ∈ {1, 2, . . . , 12}), no pooling is
assumed to take place and the formula reduces to (Kingman, 1962):

E [Wi] =

(
C2
ai

+ C2
si

2

)(
ρi

1− ρi

)
1

µi
+

1

µi
. (40)

Using the empirical data, resulting flow times at each of the workstations are obtained. The
results are presented in Table 2 and Table 3 (all results are expressed in minutes unless
indicated otherwise). While no waiting occurs at the wards (i.e. the process of recovery
takes place immediately after surgery) the performance measures of workstations 13 to 15
are not included here.
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Table 2: Summary Table of the model results (workstations 1 to 6)

i 1 2 3 4 5 6

1
ψi

24.85 24.85 24.85 24.85 24.85 24.85
1
µi

310.7 690.4 310.7 167.9 155.3 248.5

C2
si

1.334 1.334 1.334 1.334 1.334 1.334
1
λi

329.8 741.5 317.0 174.5 167.5 268.8

C2
ai

1.026 1.418 1.051 0.759 0.752 0.952
Ai 0.080 0.036 0.080 0.148 0.160 0.100
ρi 0.942 0.931 0.980 0.962 0.927 0.925
E [Wi] (days) 4.360 9.402 12.90 3.219 1.547 2.593

Table 3: Summary Table of the model results (workstations 7 to 12)

i 7 8 9 10 11 12

1
νi

110.0 96.20 89.17 57.50 56.35 93.18
1
µi

1048 2004 1351 845.7 593.2 1035

C2
si

0.266 0.406 0.203 0.171 0.165 0.274
1
λi

1,111 2,111 1,380 883.4 620.5 1,073

C2
ai

1.089 1.121 1.074 1.058 1.068 1.070
Ai 0.105 0.048 0.066 0.068 0.095 0.090
ρi 0.943 0.950 0.979 0.957 0.956 0.965
E [Wi] (days) 8.907 21.38 29.42 8.674 5.918 14.14

With respect to consultation, no distinction was made between the different surgeons.
One can observe that the effective service time (including the effect of interrupts and ab-
sences) amounts to 24.85 minutes (the natural service time amounting to 15 minutes). The
coefficient of variation equals 1.334 (the natural coefficient of variation amounting to 0.6386).
Arrival rates and their variances depend on the number of patients visiting each surgeon.
The utilization rates of the surgeons are all very high, which translates into significant patient
flow times varying from 1.5 days to 12.9 days.

Similar observations may be made with respect to surgery. Here we allow surgeons to
have different processing times depending on the type of surgery they perform. In addition,
observe the significantly longer waiting times for patients at the surgery level.

4.2 The impact of interrupts

The impact of interrupts on medical practice has been observed by Harvey, Jarrett and
Peltekian (1994), Lehaney, Clarke and Paul (1999), Chisholm et al. (2001), France, Levin,
Hemphill, Chen, Rickard, Makowski, Jones and Aronsky (2005), Volpp and Grande (2006),
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Table 4: Impact of interrupts (expressed in minutes) on patient flow time (expressed in days)
at a single workstation

τf E [W ] ρ τf E [W ] ρ τf E [W ] ρ

10.4 183.2 0.998 11.6 16.24 0.984 18 4.433 0.943
10.5 93.58 0.997 11.8 14.35 0.982 20 3.393 0.936
10.6 63.28 0.995 12.0 12.90 0.980 25 3.288 0.924
10.7 48.05 0.994 12.5 10.43 0.975 30 2.968 0.916
10.8 38.88 0.993 13.0 8.880 0.971 40 2.652 0.907
10.9 32.76 0.992 14.0 7.029 0.963 60 2.401 0.897
11.0 28.38 0.990 15.0 5.966 0.957 80 2.294 0.893
11.2 22.54 0.988 16.0 5.276 0.952
11.4 18.82 0.986 17.0 4.791 0.947

Tucker and Spear (2006) and Gabow, Karkhanis, Knight, Dixon, Eiser and Albert (2006)
among others. All agree on the detrimental effects of interrupts on patient flow time. In
order to demonstrate these detrimental effects, we present a number of scenarios in which
we gradually reduce the impact of interrupts. We build on the setting of the hospital de-
partment discussed previously. To maintain transparency, we focus on a single consultation
workstation (i.e. the only workstations that are susceptible to interrupts during the service
process). We adjust the mean time to interrupt (i.e. τf ) at this workstation to assess the
varying impact of interrupts (all other model parameters remain unchanged). The results
are given in Table 4. Note that we used the third workstation to study the impact of various
degrees of interrupts (the results corresponding to the numerical example are indicated in
bold). Figure 5 illustrates the phenomenon graphically.
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Figure 5: Varying impact of interrupts (expressed in minutes) and the effect on patient
waiting times (expressed in days)

It is clear that heavy traffic systems (i.e. systems which operate under high workload)
benefit greatly from even a small reduction in utilization rate. Unfortunately, only limited
means are available to achieve such a reduction in utilization rate. A variety of options arise:

• The most obvious way to reduce the effective utilization is process improvement. Con-
tinuous improvement and six sigma programs are very beneficial. Reducing the fre-
quency of interrupts can be classified in this category.

• Expand capacity; hospital resources such as operating theatres, scanners and other
equipment are often operating at maximum capacity. Expanding capacity would be
an effective means to reduce hospital workload. However, expanding capacity is often
very expensive or is simply impossible (e.g. due to legal constraints).

• Limit patient volumes; a reduction in hospital workload might also be achieved by
limiting the amount of patients receiving treatment. Pursuing this option however,
results in loss of hospital income and a reduced level of service.

In the literature, valuable insights are provided that offer guidance in the quest to reduce
the impact of interrupts. For instance, Harvey et al. (1994) suggest the pooling of paging of
doctors (next to telephone calls, paging calls are one of the largest sources of interrupts) in
order to decrease variability in individual paging patterns. France et al. (2005) propose the
use of information systems (e.g. an electronic whiteboard) and team training to enhance per-
formance. Tucker et al. (2006) suggest the redesign of treatment processes (e.g. outsourcing
of administrative tasks) in order to make service more robust against preemptive outages.

21

http://dx.doi.org/10.1007/978-1-4419-6472-4_18
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1007/978-1-4419-6472-4 18 • www.stefancreemers.be • info@stefancreemers.be

In addition Tucker et al. (2006) and Volpp et al. (2006) propose the filtering of non-urgent
communication towards medical staff. These and other practical guidelines enable hospital
decision makers to minimize the impact of interrupts on the service process.

4.3 The impact of pooling

Pooling refers to the aggregation (consolidation) of the demand from multiple items into one,
such that the consolidated demand can be satisfied from a single buffer. More specifically,
capacity pooling refers to the idea of sharing available capacity among various sources of
demand (e.g. patient classes). In a hospital setting this refers to the sharing of expensive
diagnostic equipment, wards or labs. In a non-pooling environment, each resource fulfills
its own demand, relying solely on its own capacity. In a pooled environment, demand is
aggregated and fulfilled from a single shared facility. A rich literature on pooling in queueing
systems exists. For an excellent overview, we refer to Benjaafar and Cooper (2005) and Yu
and Benjaafar (2006).

It has long been known that pooling is beneficial to system performance. More specifi-
cally, pooling allows to maintain a specified level of service quality (e.g. patient flow times)
with less capacity requirements. The beneficial effect of pooling stems from the increased
ability of the system to cope with variability. For instance, in pooled systems, it is much less
likely for the queue to be empty. As such, the impact of variability in the arrival pattern of
patients (patients may arrive early, late or may even fail to show up at all) or in the service
process of surgeons is minimized.

In this section, we demonstrate the impact of server pooling by means of a small experi-
ment. We build on the setting of the hospital department discussed in the previous sections.
In the experiment the servers at the consultation and surgery level are pooled. The following
assumptions are imposed:

• Patients are treated by the first surgeon available for service, even if the patient does
not belong to the patient population corresponding to that surgeon.

• Surgeon working schedules are identical and no structural constraints are imposed (i.e.
it should be possible to service 6 patients simultaneously).

Returning to our example setting, the six consultation and the six surgery workstations
are replaced by a single consultation and a single surgery workstation respectively. Each
of these workstations has six parallel servers in operation. The resulting queueing network
contains five workstations i, i ∈ {1, 2, . . . , 5}. Let station 1 to 5 represent consultation,
surgery, day hospital, internal ward and external ward respectively. When retaining all other
characteristics of the setting discussed in the previous sections, one can use the multiserver
Kingman equation to obtain patient flow times. The resulting performance measures are
presented in Table 5 (the non-pooled flow times are the weighted average of the flow times
observed at the consultation and surgery workstations presented in section 4.1).
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Table 5: Summary table of the model results after pooling (consultation and surgery work-
stations)

i 1 2

1
µi

246.90 995.87

C2
si

1.334 0.224
1
λi

43.56 173.2

C2
ai

0.996 1.075
Ai 0.101 0.079
ρi 0.944 0.958
E [Wi] (pooled) 0.518 1.612
E [Wi] (non-pooled) 4.523 12.47

The benefits of pooling are clear. Without increasing capacity or altering any of the other
system characteristics (except of course the pooling of capacity) we are able to reduce patient
flow times at the consultation and surgery level by a factor of 8.73 and 7.74 respectively.

Unfortunately, it is often impossible to achieve such a high degree of pooling in a real life
hospital system. One quickly runs into a number of limitations:

• Unique relation between patient and surgeon; patients will often refuse to consult
another surgeon.

• Limited flexibility of resources; each surgeon has his own specialization. It is often
impossible, even for surgeons at the same department, to pass on jobs. In other words,
the flexibility of surgeons is limited.

• Resources often operate at different time instances; for pooling to take place surgeons
need to operate at the same time instance. Due to busy schedules and other limitations,
this is not always possible.

• Structural characteristics may further limit the practical applicability of pooling. For
instance, if only two operating theatres are available, it is impossible to pool the
capacity of the six surgeons at the surgery level. In other words, the bottleneck has
shifted from the surgeons onto the number of available operating theatres.

Notwithstanding these constraints, it should be clear that even a small amount of pooling
may yield significant reductions in patient flow time. Therefore the pooling of hospital
resources is a worthwhile matter for further investigation.

4.4 Finding the optimal number of patients in a service session

The impact of absences at the start of a consultation or surgery session is discussed in Babes
et al. (1991), Liu et al. (1998a), Liu and Liu (1998b) and Easton et al. (2005). There is
a general agreement on the disruptive effect of absences on patient flow time. Easton et al.
(2005) identify robust staffing, scheduling and recovery practices to minimize the effects of
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absences. Liu et al. (1998b) acknowledge the importance of consultation and surgery block
size (i.e. the number of patients treated during a consultation session) and propose a what-if
simulation approach in order to determine the best block size.

In fact, the relationship between block size and patient flow time is akin to the rela-
tionship between batch size and waiting time (in the presence of setups between batches
in a manufacturing setting). As such the convex relationship first described by Karmarkar
(1987) may also be observed here. In this view, Vandaele, Van Nieuwenhuyse and Cupers
(2003b) determine the optimal size of patient groups queueing in front of a nuclear resonance
scanner. We build on the model of Lambrecht and Vandaele (1996) in order to determine
the optimal number of patients that receive treatment during a service session.

Two conflicting effects may be observed:

• The grouping effect; referring to the time required to assemble a batch of size n. The
larger the batch size, the longer patients will have to wait before receiving service.

• The saturation effect; the smaller the batch size, the more service sessions are initiated,
the larger the probability of having an absence of medical staff at the start of a service
session.

We illustrate these effects in Figure 6.

Batch size

Average patient flow time

Grouping effect

Saturation effect

Average patient flow time

Figure 6: Convex relationship between average patient flow time and batch size
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The combination of both effects results in a convex relationship, which implies that there
is an optimal group size minimizing average patient lead time. In what follows, we develop
the mathematical model to address the batch size decision problem. The objective is to
determine the batch size that minimizes the average patient lead time.

In this section we build on the third workstation discussed in the base case (other work-
stations at the consultation and surgery level may also be analyzed in a similar fashion).
To maintain the transparency of the model, we omit the index i referring to the original
workstation used in this experiment. Other than the batching of patients, the dynamics of
the workstation remain unchanged (as compared to previous sections).

Once sufficient patients are available, a batch (i.e. the equivalent of a service session
workload) is created and is introduced into a queue (it is clear that this grouping does not
imply that patients have to wait physically in the hospital). Whenever the server is idle, the
batch as a whole receives service. After service, the batch is separated and patients resume
their individual routings. A batch of patients is characterized by:

• a batch size n,

• a batch arrival rate λb,

• a coefficient of variation of the interarrival times of the batches C2
ab

.

• a batch service rate µb,

• a coefficient of variation of the service times of the batches C2
sb

,

where

λb = nλ, (41)

C2
ab

=
C2
a

n
, (42)

µb = nµ, (43)

C2
sb

=
C2
s

n
(44)

and λ, C2
a , µ, C2

s are the respective arrival rate, the squared coefficient of variation of the
interarrival times, the service rate and the squared coefficient of variation of the service times
of the individual patients visiting the third workstation.

The flow time of a patient in this system contains the following elements:

• The collection time; the time required until sufficient patients have arrived and a batch
may be processed. The larger the batch size, the longer it takes to gather sufficient
patients in order to perform a batch service.

• The waiting time of the batch itself; other batches (i.e. service sessions) may have to
be serviced first.

• The absence time; prior to the service of a batch of patients, there exists a probability
that the surgeon (or another crucial hospital resource) is absent. The batch of patients
has to wait for the surgeon in order to receive service. This absence time can be
considered as a setup time for the batch.
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• The actual processing of individual patients in the batch.

We visualize the flow time of a patient in Figure 7.

Collection time
Batch waiting time

Absence
Processing time

Flow time of the first patient

Processing time of the first patient

Waiting time first patient prior to batch is created

Batch created

Figure 7: Visualization of the different phases of the batch flow time

The expected flow time of a single patient in the system can be expressed as (Lambrecht
and Vandaele, 1996):

E [W ] =
n− 1

2λ
+ E [Wq] +

1

µs
+
n+ 1

2µ
. (45)

This flow time clearly consists of four building blocks. The first term corresponds to the
average time a patient will have to wait until a group of size n has been formed (i.e. the
collection time). The term E [Wq] stands for the average time that a batch of patients
spends waiting in queue until the server becomes idle. We approximate E [Wq] by means of
the Kingman equation and obtain:

E [Wq] =

(
C2
ab

+ C2
sb

2

)(
ρ

1− ρ

)
1

µb
, (46)

where ρ is the effective utilization rate at the third workstation and is given by (Lambrecht
et al., 1996):

ρ =
nλ

nµ+ µs
. (47)

The third term corresponds to the absence time that is incurred at the start of a service
session in which a batch of patients receives treatment. Both the second and third term are
the same for all patients in the batch. The last term indicates how much time a patient
spends on processing itself. At this point the model is complete and we can formally state
our optimization problem:

Minimize E [W ] , E [W ] = n−1
2λ

+ E [Wq] + 1
µs

+ n+1
2µ
,

s.t. ρ < 1,
n ≥ 1.
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When using the setting of the hospital department outlined in the previous sections,
we are able to provide a numerical example. To maintain transparency, we select a single
consultation workstation and assess different values of n in order to obtain the optimal
number of patients to be treated during a service session. A summary of the resulting
figures is presented in Table 6.

Table 6: Summary table of the model results featuring different batch sizes

n 1
µb

C2
sb

ρ E [W ]

3 82.063 0.2276 1.0787 NA
4 99.418 0.1707 0.9802 27.460
5 116.77 0.1365 0.9210 8.2226
6 134.13 0.1138 0.8815 6.3769
7 151.48 0.0975 0.8534 5.8782
8 168.84 0.0853 0.8322 5.7761
9 186.19 0.0758 0.8162 5.8441
10 203.54 0.0683 0.8027 6.0004
11 220.90 0.0621 0.7919 6.2086
12 238.25 0.0569 0.7830 6.4497
13 255.61 0.0525 0.7754 6.7132
14 272.96 0.0488 0.7689 6.9924
15 290.32 0.0455 0.7632 7.2831
16 307.67 0.0427 0.7583 7.5826
17 325.03 0.0402 0.7540 7.8888
18 342.38 0.0379 0.7501 8.2004
19 359.73 0.0359 0.7466 8.5162
20 377.09 0.0341 0.7435 8.8355

An illustration is provided in Figure 8.
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Figure 8: Finding the optimal number of patients

One can deduce that, for this particular workstation, the optimum is reached when
treating 8 patients during each service session. More precisely, given a set of input parameters
(absence probability, service and interarrival times, . . . ) we are able to determine the optimal
number of patients to be treated during a service session.

5 Conclusion

In this article we discuss some of the features that differ when modeling healthcare queueing
models on the one hand and traditional manufacturing models on the other hand. We show
how to implement these features in a hospital queueing network. We used the parametric
decomposition approach to assess performance measures at the hospital queueing network. In
addition, we develop new expressions to model service outages that are typical in services in
general and in healthcare in particular. The resulting queueing network is used to construct a
numerical example and to illustrate a number of practical applications. First we demonstrate
the detrimental effect of service interrupts on patient flow times. Next, the beneficial effect
of pooling hospital resources is illustrated. Finally, we develop an optimization model that
is able to determine the optimal number of patients treated during a single service session.

Notwithstanding these accomplishments, there is still room for improvement. More
specifically, improvements may be made with respect to the modeling of time in queueing
systems. Open problems include the modeling of time-dependent demand rates, increasing
workload as waiting times increase (patients need to be monitored, receive care, . . . ), . . . .
Moreover, given the inherent high degree of variability in service times, hospitals often use
flexible working schedules that allow for overtime, variable server capacity and other devia-
tions from the standard queueing model topology. Such deviations add to the complexity of
the problem, making “time” a major modeling issue.
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