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Fear not!
we have an example to help you 

understand all this mumbo jumbo! In 
the example, we consider an eNPV
objective and assume that activity 

durations are exponentially distributed 
(to keep things simple).
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Network of UDCs
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Past work: example

Illustration of state space & SDP recursion

In the end, you have 
processed all states 

and obtain the optimal 
eNPV of the project
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are eligible to start
We can determine the optimal set of ongoing 

activities (i.e., the set of ongoing activities that 
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New approach: relax state space 
definition 

The disadvantage 
of this approach is that you have to 

enumerate all sets of ongoing activities in 
order to find the optimal set that maximizes 

the eNPV (however, this also needs to be 
done in the old approach)



New approach: relax state space 
definition 

The advantages of this 
approach are clear:

1. You only need up to 2n states
instead of 3n states => huge
reduction in memory
requirements.

2. It is easy to implement
heuristics that are able to
quickly identify a “good” set of
ongoing activities.
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• Let Xf denote the array of states for which f activities are 
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• States in Xf link only to states in X(f+1)

Once we have determined the objective value in all states 
of Xf, we no longer need the states in X(f+1) & the memory 
occupied by these states can be freed

We keep at most two arrays of states in memory which 
again results in a huge reduction of memory requirements
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New approach: no longer uses UDCs 

• Before, UDCs where used to structure the state space
We needed to determine the UDC network (which in itself 

is a NP-hard task)
• In the new approach, we use arrays of states that have the 

same number of finished activities
• Let Xf denote the array of states for which f activities are 

finished
• States in Xf link only to states in X(f+1)

Once we have determined the objective value in all states 
of Xf, we no longer need the states in X(f+1) & the memory 
occupied by these states can be freed

We keep at most two arrays of states in memory which 
again results in a huge reduction of memory requirements

To summarize, the advantages of no 
longer using UDCs are:

1. Huge reduction in required memory
2. Improved computational efficiency

because we no longer need to
determine the UDC network

3. Easy to use parallel computing to
further improve computational
efficiency



New approach: results

• Computational experiment to compare the old 
and the new approach with respect to:
– The number of instances solved

– The computation speed (CPU times)

– The average maximum number of states stored in 
memory

• We use a dataset with 30 projects for each:
– Number of activities (n between 10 & 70)

– Order Strength (OS equal to 0.8, 0.6, and 0.4)
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n = 10 0.00 0.00 0.00

n = 20 0.00 2.39 38.6

n = 30 0.00 24.8 934

n = 40 2.9 273 25413

n = 50 9.97 2155 315807
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n = 70 112 149925 NA
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OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 0.00 0.00

n = 30 0.00 0.00 2.87

n = 40 0.00 1.28 30.4

n = 50 0.00 4.87 210

n = 60 0.00 20.2 1693

n = 70 0.00 79.1 11006

NEW

Average maximum # states (x1000)
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It is possible to interrupt the execution of an 

activity/that an activity is started multiple times
We cannot solve the traditional SRCPSP
• We can, however, solve the SRCPSP where the 

execution of activities is allowed to be 
interrupted (the results may serve as a 
proxy/lower bound for the traditional SRCPSP)
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Why are activities 
not interrupted 

when the 
objective is to 

maximize eNPV?



What about the SRCPSP?

• We no longer keep track of the ongoing activities
In every state we determine the optimal set of 

ongoing activities
It is possible to interrupt the execution of an 

activity/that an activity is started multiple times
We cannot solve the traditional SRCPSP
• We can, however, solve the SRCPSP where the 

execution of activities is allowed to be 
interrupted (in addition, the results may serve as 
a proxy/lower bound for the traditional SRCPSP)

In theory this is possible, 
however, interrupting an 
activity would result in 
incurring its cost twice.



SRCPSP: results

• Computational experiment to compare the old 
and the new approach with respect to:

– The computation speed (CPU times)

– The average maximum number of states stored in 
memory

– The gap in between the solutions of the old 
approach (without activity splitting) & those of 
the new approach (with activity splitting)

• We use the J30 & J60 PSPLIP datasets



SRCPSP results:
computational performance

Old New Old New

Instances in set 480 480 480 480

Instances solved 480 480 303 303 (480)

Average CPU time (sec) 0.48 0.02 1591 81.6

Average max # states (x1000) 176 1.99 374499 508

J30 J60
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SRCPSP results:
gap with traditional SRCPSP

J30 J60

Instances in set 480 480

Instances solved 480 303

Minimum gap 0.00 % 0.00 %

Average gap 1.55 % 1.92 %

Maximum gap 6.65 % 7.91 %
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We improve the models of Creemers et al. (2010) 
and Creemers (2015) and obtain an increase in 
computational efficiency with factor 6.85 and a 

reduction of memory requirements with factor 335!

Contributions

We can use our model to find the optimal 
expected NPV for projects with up to 120 

activities that have general activity durations!

Our model can also be used to study the SRCPSP 
where the execution of activities is allowed to be 

interrupted (i.e., we can assess the value of 
splitting activities).





PH distributions

• Introduced by Neuts in 1981

• A Phase Type (PH) distribution is a mixture of 
exponential distributions

• The exponential, Erlang, Coxian, and hyper-
exponential distribution are all examples of a PH 
distribution

• We use simple PH distributions to match the first 
two moments of the distribution of the activity 
duration (more advanced PH distributions, 
however, can also be used)



PH distributions: Example of a single 
activity

A

B

SCV > 1
(two-phase Coxian distribution)

A BA

SCV in [0.5 ; 1)
(hypo-exponential distribution)

SCV = 1
(exponential distribution)

START

ENDSTART

START ENDEND

p



PH distributions: Example of a single 
activity

A

SCV = 1
(exponential distribution)

START END



A

B

SCV > 1
(two-phase Coxian distribution)

ENDSTART
p

PH distributions: Example of a single 
activity

A

SCV = 1
(exponential distribution)

START END



A

B

SCV > 1
(two-phase Coxian distribution)

ENDSTART
p

PH distributions: Example of a single 
activity

A

SCV = 1
(exponential distribution)

START END

CA B

SCV in [0.333 ; 0.5)
(hypo-exponential distribution)

START END



PH distributions: Example of a project 
network



PH distributions: Example of a project 
network

Example network

0

1

2

3

4



PH distributions: Example of a project 
network

Example network

0

1

2

3

4

0 Dummy start

1
2
3
4

SCV in [0.33;0.5)

SCV = 1

SCV > 1

Dummy finish

Activity SCV



PH distributions: Example of a project 
network

Example network

0

1

2

3

4

Markovian PERT network

1C1A 1BSTART END

Activity 1

2ASTART END

Activity 2

3A

3B

ENDSTART
p

Activity 3

0 4

0 Dummy start

1

2

3

4

SCV in [0.33;0.5)

SCV = 1

SCV > 1

Dummy finish

Activity SCV



PH distributions: Example of a project 
network

Example network

0

1

2

3

4

Markovian PERT network

1C1A 1BSTART END

Activity 1

2ASTART END

Activity 2

3A

3B

ENDSTART
p

Activity 3

0 4

0 Dummy start

1

2

3

4

SCV in [0.33;0.5)

SCV = 1

SCV > 1

Dummy finish
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Every project network can be transformed 
in a Markovian PERT network (no matter 

which PH distributions are used).
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PH distributions: What about low 
variability?

SCV = 0.5 (1/2)

A BSTART END

SCV = 0.25 (1/4)

A B CSTART ENDD

SCV = 0.167 (1/6)

A B CSTART ENDD E F

Low variability duration variability inflates the size of the 
Markovian PERT network.

=> 
Our model works best when duration variability is 

moderate to high.
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