
A new approach to maximize the 
expected NPV (eNPV) of a project 
with activity duration uncertainty

Stefan Creemers
(July 13, 2015)



Agenda

• Past work

• New approach

• What about the SRCPSP?

• Contribution



Agenda

• Past work

• New approach

• What about the SRCPSP?

• Contribution



Past work: overview

Creemers, Leus, Lambrecht
(2010). Scheduling Markovian 

PERT networks to maximize the 
net present value, Operations 

Research Letters.



Past work: overview

1. Maximum-eNPV objective
2. No resources
3. Exponentially-distributed 

activity durations
4. Use of a SDP recursion to 

obtain the optimal policy

Creemers, Leus, Lambrecht
(2010). Scheduling Markovian 

PERT networks to maximize the 
net present value, Operations 

Research Letters.



Past work: overview

1. Maximum-eNPV objective
2. No resources
3. Exponentially-distributed 

activity durations
4. Use of a SDP recursion to 

obtain the optimal policy

Creemers, Leus, Lambrecht
(2010). Scheduling Markovian 

PERT networks to maximize the 
net present value, Operations 

Research Letters.

Creemers(2015) Minimizing the 
makespanof a project with 
stochastic activity durations 
under resource constraints, 

Journal of Scheduling.



Past work: overview

1. Maximum-eNPV objective
2. No resources
3. Exponentially-distributed 

activity durations
4. Use of a SDP recursion to 

obtain the optimal policy

1. Minimum-makespan objective
2. Renewable resources
3. General activity durations (PH 

approximation)
4. Use of an improved/modified 

SDP recursion

Creemers, Leus, Lambrecht
(2010). Scheduling Markovian 

PERT networks to maximize the 
net present value, Operations 

Research Letters.

Creemers(2015) Minimizing the 
makespanof a project with 
stochastic activity durations 
under resource constraints, 

Journal of Scheduling.



Past work: overview

1. Maximum-eNPV objective
2. No resources
3. Exponentially-distributed 

activity durations
4. Use of a SDP recursion to 

obtain the optimal policy

1. Minimum-makespan objective
2. Renewable resources
3. General activity durations (PH 

approximation)
4. Use of an improved/modified 

SDP recursion

Creemers, Leus, Lambrecht
(2010). Scheduling Markovian 

PERT networks to maximize the 
net present value, Operations 

Research Letters.

Creemers(2015) Minimizing the 
makespanof a project with 
stochastic activity durations 
under resource constraints, 

Journal of Scheduling.

Fear not!
we have an example to help you 

understand all this mumbo jumbo! In 
the example, we consider an eNPV
objective and assume that activity 

durations are exponentially distributed 
(to keep things simple).



Past work: example

AON network with 5 non-dummy activities



Past work: state & state space

• The state of the project is determined by the status of the 
activities

• The status of an activity j at time t is either:

– Idle (qj (t) = 0)

– Busy (qj (t) = 1)

– Finished (qj (t) = 2)

• q (t) = {q1(t), q2(t), … qn(t)} defines the state of the system

• The size of the state space has upper bound 3n

• Most of these states do not meet precedence constraints

 A clear and strict definition of the state space is essential

 We use UDCs to structure the state space



Past work: state & state space

• The state of the project is determined by the status of the 
activities

• The status of an activity j at time t is either:

– Idle (qj (t) = 0)

– Busy (qj (t) = 1)

– Finished (qj (t) = 2)

• q (t) = {q1(t), q2(t), … qn(t)} defines the state of the system

• The size of the state space has upper bound 3n

• Most of these states do not meet precedence constraints

 A clear and strict definition of the state space is essential

 We use UDCs to structure the state space



Past work: state & state space

• The state of the project is determined by the status of the 
activities

• The status of an activity j at time t is either:

– Idle (qj (t) = 0)

– Busy (qj (t) = 1)

– Finished (qj (t) = 2)

• q (t) = {q1(t), q2(t), … qn(t)} defines the state of the system

• The size of the state space has upper bound 3n

• Most of these states do not meet precedence constraints

 A clear and strict definition of the state space is essential

 We use UDCs to structure the state space



Past work: state & state space

• The state of the project is determined by the status of the 
activities

• The status of an activity j at time t is either:

– Idle (qj (t) = 0)

– Busy (qj (t) = 1)

– Finished (qj (t) = 2)

• q (t) = {q1(t), q2(t), … qn(t)} defines the state of the system

• The size of the state space has upper bound 3n

• Most of these states do not meet precedence constraints

 A clear and strict definition of the state space is essential

 We use UDCs to structure the state space



Past work: state & state space

• The state of the project is determined by the status of the 
activities

• The status of an activity j at time t is either:

– Idle (qj (t) = 0)

– Busy (qj (t) = 1)

– Finished (qj (t) = 2)

• q (t) = {q1(t), q2(t), … qn(t)} defines the state of the system

• The size of the state space has upper bound 3n

• Most of these states do not meet precedence constraints

 A clear and strict definition of the state space is essential

 We use UDCs to structure the state space



Past work: state & state space

• The state of the project is determined by the status of the 
activities

• The status of an activity j at time t is either:

– Idle (qj (t) = 0)

– Busy (qj (t) = 1)

– Finished (qj (t) = 2)

• q (t) = {q1(t), q2(t), … qn(t)} defines the state of the system

• The size of the state space has upper bound 3n

• Most of these states do not meet precedence constraints

 A clear and strict definition of the state space is essential

 We use UDCs to structure the state space



Past work: state & state space

• The state of the project is determined by the status of the 
activities

• The status of an activity j at time t is either:

– Idle (qj (t) = 0)

– Busy (qj (t) = 1)

– Finished (qj (t) = 2)

• q (t) = {q1(t), q2(t), … qn(t)} defines the state of the system

• The size of the state space has upper bound 3n

• Most of these states do not meet precedence constraints

 A clear and strict definition of the state space is essential

 We use UDCs to structure the state space



Past work: example

UDC = set of all activities that can be executed in parallel



Past work: example

UDC = set of all activities that can be executed in parallel



Past work: example

UDC = set of all activities that can be executed in parallel



Past work: example

UDC = set of all activities that can be executed in parallel



Past work: example

UDC = set of all activities that can be executed in parallel



Past work: example

UDC = set of all activities that can be executed in parallel



Past work: example

Network of UDCs



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion



Past work: example

Illustration of state space & SDP recursion

In the end, you have 
processed all states 

and obtain the optimal 
eNPV of the project



Agenda

• Past work

• New approach

• What about the SRCPSP?

• Contribution



New approach

1. SDP recursion
2. Optimal solution
3. General activity durations
4. eNPV & SRCPSP
5. UDCs to structure state space
6. Upper bound state space = 3n

PAST 
WORK



New approach

1. SDP recursion
2. Optimal solution
3. General activity durations
4. eNPV & SRCPSP
5. UDCs to structure state space
6. Upper bound state space = 3n

PAST 
WORK

Main bottleneck = memory!



New approach

1. SDP recursion
2. Optimal solution
3. General activity durations
4. eNPV & SRCPSP
5. UDCs to structure state space
6. Upper bound state space = 3n

1. SDP recursion
2. Optimal solution
3. General activity durations
4. eNPV (SRCPSP = see infra)
5. No UDCs
6. Upper bound state space = 2n

? NEW 
APPROACH

PAST 
WORK

Main bottleneck = memory!



New approach

1. SDP recursion
2. Optimal solution
3. General activity durations
4. eNPV & SRCPSP
5. UDCs to structure state space
6. Upper bound state space = 3n

1. SDP recursion
2. Optimal solution
3. General activity durations
4. eNPV (SRCPSP = see infra)
5. No UDCs
6. Upper bound state space = 2n

? NEW 
APPROACH

PAST 
WORK

Main bottleneck = memory!

How does 
he do that?



New approach: relax state space 
definition 

• Before, a state was defined by the set of idle, 
busy, and finished activities

• In the new approach, a state is defined only by 
the set of finished activities

We don’t know which activities are ongoing!
• We, however, do know the set of activities that 

are eligible to start
We can determine the optimal set of ongoing 

activities (i.e., the set of ongoing activities that 
maximizes the eNPV)



New approach: relax state space 
definition 

• Before, a state was defined by the set of idle, 
busy, and finished activities

• In the new approach, a state is defined only by 
the set of finished activities

We don’t know which activities are ongoing!
• We, however, do know the set of activities that 

are eligible to start
We can determine the optimal set of ongoing 

activities (i.e., the set of ongoing activities that 
maximizes the eNPV)



New approach: relax state space 
definition 

• Before, a state was defined by the set of idle, 
busy, and finished activities

• In the new approach, a state is defined only by 
the set of finished activities

We don’t know which activities are ongoing!
• We, however, do know the set of activities that 

are eligible to start
We can determine the optimal set of ongoing 

activities (i.e., the set of ongoing activities that 
maximizes the eNPV)



New approach: relax state space 
definition 

• Before, a state was defined by the set of idle, 
busy, and finished activities

• In the new approach, a state is defined only by 
the set of finished activities

We don’t know which activities are ongoing!
• We, however, do know the set of activities that 

are eligible to start
We can determine the optimal set of ongoing 

activities (i.e., the set of ongoing activities that 
maximizes the eNPV)



New approach: relax state space 
definition 



New approach: relax state space 
definition 

The disadvantage 
of this approach is that you have to 

enumerate all sets of ongoing activities in 
order to find the optimal set that maximizes 

the eNPV (however, this also needs to be 
done in the old approach)



New approach: relax state space 
definition 

The advantages of this 
approach are clear:

1. You only need up to 2n states
instead of 3n states => huge
reduction in memory
requirements.

2. It is easy to implement
heuristics that are able to
quickly identify a “good” set of
ongoing activities.



New approach: no longer uses UDCs 

• Before, UDCs where used to structure the state space
We needed to determine the UDC network (which in itself 

is a NP-hard task)
• In the new approach, we use arrays of states that have the 

same number of finished activities
• Let Xf denote the array of states for which f activities are 

finished
• States in Xf link only to states in X(f+1)

Once we have determined the objective value in all states 
of Xf, we no longer need the states in X(f+1) & the memory 
occupied by these states can be freed

We keep at most two arrays of states in memory which 
again results in a huge reduction of memory requirements



New approach: no longer uses UDCs 

• Before, UDCs where used to structure the state space
We needed to determine the UDC network (which in itself 

is a NP-hard task)
• In the new approach, we use arrays of states that have the 

same number of finished activities
• Let Xf denote the array of states for which f activities are 

finished
• States in Xf link only to states in X(f+1)

Once we have determined the objective value in all states 
of Xf, we no longer need the states in X(f+1) & the memory 
occupied by these states can be freed

We keep at most two arrays of states in memory which 
again results in a huge reduction of memory requirements



New approach: no longer uses UDCs 

• Before, UDCs where used to structure the state space
We needed to determine the UDC network (which in itself 

is a NP-hard task)
• In the new approach, we use arrays of states that have the 

same number of finished activities
• Let Xf denote the array of states for which f activities are 

finished
• States in Xf link only to states in X(f+1)

Once we have determined the objective value in all states 
of Xf, we no longer need the states in X(f+1) & the memory 
occupied by these states can be freed

We keep at most two arrays of states in memory which 
again results in a huge reduction of memory requirements



New approach: no longer uses UDCs 

• Before, UDCs where used to structure the state space
We needed to determine the UDC network (which in itself 

is a NP-hard task)
• In the new approach, we use arrays of states that have the 

same number of finished activities
• Let Xf denote the array of states for which f activities are 

finished
• States in Xf link only to states in X(f+1)

Once we have determined the objective value in all states 
of Xf, we no longer need the states in X(f+1) & the memory 
occupied by these states can be freed

We keep at most two arrays of states in memory which 
again results in a huge reduction of memory requirements



New approach: no longer uses UDCs 

• Before, UDCs where used to structure the state space
We needed to determine the UDC network (which in itself 

is a NP-hard task)
• In the new approach, we use arrays of states that have the 

same number of finished activities
• Let Xf denote the array of states for which f activities are 

finished
• States in Xf link only to states in X(f+1)

Once we have determined the objective value in all states 
of Xf, we no longer need the states in X(f+1) & the memory 
occupied by these states can be freed

We keep at most two arrays of states in memory which 
again results in a huge reduction of memory requirements



New approach: no longer uses UDCs 

• Before, UDCs where used to structure the state space
We needed to determine the UDC network (which in itself 

is a NP-hard task)
• In the new approach, we use arrays of states that have the 

same number of finished activities
• Let Xf denote the array of states for which f activities are 

finished
• States in Xf link only to states in X(f+1)

Once we have determined the objective value in all states 
of Xf, we no longer need the states in X(f+1) & the memory 
occupied by these states can be freed

We keep at most two arrays of states in memory which 
again results in a huge reduction of memory requirements

That’s all very nice, 
however, these arrays 
of states can become 

very big => how do you 
look up states in a quick 

and efficient way?



New approach: no longer uses UDCs 

• Before, UDCs where used to structure the state space
We needed to determine the UDC network (which in itself 

is a NP-hard task)
• In the new approach, we use arrays of states that have the 

same number of finished activities
• Let Xf denote the array of states for which f activities are 

finished
• States in Xf link only to states in X(f+1)

Once we have determined the objective value in all states 
of Xf, we no longer need the states in X(f+1) & the memory 
occupied by these states can be freed

We keep at most two arrays of states in memory which 
again results in a huge reduction of memory requirements

That is trivial! The array is 
constructed in such a way that 

states are ordered => we can use 
binary search to look up states in a 

quick & efficient way.



New approach: no longer uses UDCs 

• Before, UDCs where used to structure the state space
We needed to determine the UDC network (which in itself 

is a NP-hard task)
• In the new approach, we use arrays of states that have the 

same number of finished activities
• Let Xf denote the array of states for which f activities are 

finished
• States in Xf link only to states in X(f+1)

Once we have determined the objective value in all states 
of Xf, we no longer need the states in X(f+1) & the memory 
occupied by these states can be freed

We keep at most two arrays of states in memory which 
again results in a huge reduction of memory requirements

To summarize, the advantages of no 
longer using UDCs are:

1. Huge reduction in required memory
2. Improved computational efficiency

because we no longer need to
determine the UDC network

3. Easy to use parallel computing to
further improve computational
efficiency



New approach: results

• Computational experiment to compare the old 
and the new approach with respect to:
– The number of instances solved

– The computation speed (CPU times)

– The average maximum number of states stored in 
memory

• We use a dataset with 30 projects for each:
– Number of activities (n between 10 & 70)

– Order Strength (OS equal to 0.8, 0.6, and 0.4)



New approach: 
number of instances solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 16

n = 60 30 30 0

n = 70 30 29 0

OLD

Number solved (out of 30)



New approach: 
number of instances solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 16

n = 60 30 30 0

n = 70 30 29 0

OLD

Number solved (out of 30)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

NEW

Number solved (out of 30)



New approach: 
average CPU time (sec)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 0.00 0.00

n = 30 0.00 0.00 0.00

n = 40 0.00 0.00 41.1

n = 50 0.00 3.02 899

n = 60 0.00 39.4 NA

n = 70 0.00 365 NA

Average CPU time (sec)

OLD



New approach: 
average CPU time (sec)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 0.00 0.00

n = 30 0.00 0.00 0.00

n = 40 0.00 0.00 41.1

n = 50 0.00 3.02 899

n = 60 0.00 39.4 NA

n = 70 0.00 365 NA

Average CPU time (sec)

OLD

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 0.00 0.00

n = 30 0.00 0.00 0.00

n = 40 0.00 0.00 12.3

n = 50 0.00 0.00 270

n = 60 0.00 6.57 8960

n = 70 0.00 61.2 195691

Average CPU time (sec)

NEW



New approach: 
average maximum number of states

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 2.39 38.6

n = 30 0.00 24.8 934

n = 40 2.9 273 25413

n = 50 9.97 2155 315807

n = 60 37.9 21140 NA

n = 70 112 149925 NA

Average maximum # states (x1000)

OLD



New approach: 
average maximum number of states

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 2.39 38.6

n = 30 0.00 24.8 934

n = 40 2.9 273 25413

n = 50 9.97 2155 315807

n = 60 37.9 21140 NA

n = 70 112 149925 NA

Average maximum # states (x1000)

OLD

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0.00 0.00 0.00

n = 20 0.00 0.00 0.00

n = 30 0.00 0.00 2.87

n = 40 0.00 1.28 30.4

n = 50 0.00 4.87 210

n = 60 0.00 20.2 1693

n = 70 0.00 79.1 11006

NEW

Average maximum # states (x1000)



Agenda

• Past work

• New approach

• What about the SRCPSP?

• Contribution



What about the SRCPSP?

• We no longer keep track of the ongoing activities
In every state we determine the optimal set of 

ongoing activities
It is possible to interrupt the execution of an 

activity/that an activity is started multiple times
We cannot solve the traditional SRCPSP
• We can, however, solve the SRCPSP where the 

execution of activities is allowed to be 
interrupted (the results may serve as a 
proxy/lower bound for the traditional SRCPSP)



What about the SRCPSP?

• We no longer keep track of the ongoing activities
In every state we determine the optimal set of 

ongoing activities
It is possible to interrupt the execution of an 

activity/that an activity is started multiple times
We cannot solve the traditional SRCPSP
• We can, however, solve the SRCPSP where the 

execution of activities is allowed to be 
interrupted (the results may serve as a 
proxy/lower bound for the traditional SRCPSP)



What about the SRCPSP?

• We no longer keep track of the ongoing activities
In every state we determine the optimal set of 

ongoing activities
It is possible to interrupt the execution of an 

activity/that an activity is started multiple times
We cannot solve the traditional SRCPSP
• We can, however, solve the SRCPSP where the 

execution of activities is allowed to be 
interrupted (the results may serve as a 
proxy/lower bound for the traditional SRCPSP)



What about the SRCPSP?

• We no longer keep track of the ongoing activities
In every state we determine the optimal set of 

ongoing activities
It is possible to interrupt the execution of an 

activity/that an activity is started multiple times
We cannot solve the traditional SRCPSP
• We can, however, solve the SRCPSP where the 

execution of activities is allowed to be 
interrupted (in addition, the results may serve as 
a proxy/lower bound for the traditional SRCPSP)



What about the SRCPSP?

• We no longer keep track of the ongoing activities
In every state we determine the optimal set of 

ongoing activities
It is possible to interrupt the execution of an 

activity/that an activity is started multiple times
We cannot solve the traditional SRCPSP
• We can, however, solve the SRCPSP where the 

execution of activities is allowed to be 
interrupted (in addition, the results may serve as 
a proxy/lower bound for the traditional SRCPSP)

Why are activities 
not interrupted 

when the 
objective is to 

maximize eNPV?



What about the SRCPSP?

• We no longer keep track of the ongoing activities
In every state we determine the optimal set of 

ongoing activities
It is possible to interrupt the execution of an 

activity/that an activity is started multiple times
We cannot solve the traditional SRCPSP
• We can, however, solve the SRCPSP where the 

execution of activities is allowed to be 
interrupted (in addition, the results may serve as 
a proxy/lower bound for the traditional SRCPSP)

In theory this is possible, 
however, interrupting an 
activity would result in 
incurring its cost twice.



SRCPSP: results

• Computational experiment to compare the old 
and the new approach with respect to:

– The computation speed (CPU times)

– The average maximum number of states stored in 
memory

– The gap in between the solutions of the old 
approach (without activity splitting) & those of 
the new approach (with activity splitting)

• We use the J30 & J60 PSPLIP datasets



SRCPSP results:
computational performance

Old New Old New

Instances in set 480 480 480 480

Instances solved 480 480 303 303 (480)

Average CPU time (sec) 0.48 0.02 1591 81.6

Average max # states (x1000) 176 1.99 374499 508

J30 J60



SRCPSP results:
computational performance

Old New Old New

Instances in set 480 480 480 480

Instances solved 480 480 303 303 (480)

Average CPU time (sec) 0.48 0.02 1591 81.6

Average max # states (x1000) 176 1.99 374499 508

J30 J60



SRCPSP results:
gap with traditional SRCPSP

J30 J60

Instances in set 480 480

Instances solved 480 303

Minimum gap 0.00 % 0.00 %

Average gap 1.55 % 1.92 %

Maximum gap 6.65 % 7.91 %



Agenda

• Past work

• New approach

• What about the SRCPSP?

• Contribution



We improve the models of Creemers et al. (2010) 
and Creemers (2015) and obtain an increase in 
computational efficiency with factor 6.85 and a 

reduction of memory requirements with factor 335!

Contributions



We improve the models of Creemers et al. (2010) 
and Creemers (2015) and obtain an increase in 
computational efficiency with factor 6.85 and a 

reduction of memory requirements with factor 335!

Contributions

We can use our model to find the optimal 
expected NPV for projects with up to 120 

activities that have general activity durations!



We improve the models of Creemers et al. (2010) 
and Creemers (2015) and obtain an increase in 
computational efficiency with factor 6.85 and a 

reduction of memory requirements with factor 335!

Contributions

We can use our model to find the optimal 
expected NPV for projects with up to 120 

activities that have general activity durations!

Our model can also be used to study the SRCPSP 
where the execution of activities is allowed to be 

interrupted (i.e., we can assess the value of 
splitting activities).





PH distributions

• Introduced by Neuts in 1981

• A Phase Type (PH) distribution is a mixture of 
exponential distributions

• The exponential, Erlang, Coxian, and hyper-
exponential distribution are all examples of a PH 
distribution

• We use simple PH distributions to match the first 
two moments of the distribution of the activity 
duration (more advanced PH distributions, 
however, can also be used)



PH distributions: Example of a single 
activity

A

B

SCV > 1
(two-phase Coxian distribution)

A BA

SCV in [0.5 ; 1)
(hypo-exponential distribution)

SCV = 1
(exponential distribution)

START

ENDSTART

START ENDEND

p



PH distributions: Example of a single 
activity

A

SCV = 1
(exponential distribution)

START END



A

B

SCV > 1
(two-phase Coxian distribution)

ENDSTART
p

PH distributions: Example of a single 
activity

A

SCV = 1
(exponential distribution)

START END



A

B

SCV > 1
(two-phase Coxian distribution)

ENDSTART
p

PH distributions: Example of a single 
activity

A

SCV = 1
(exponential distribution)

START END

CA B

SCV in [0.333 ; 0.5)
(hypo-exponential distribution)

START END



PH distributions: Example of a project 
network



PH distributions: Example of a project 
network

Example network

0

1

2

3

4



PH distributions: Example of a project 
network

Example network

0

1

2

3

4

0 Dummy start

1
2
3
4

SCV in [0.33;0.5)

SCV = 1

SCV > 1

Dummy finish

Activity SCV



PH distributions: Example of a project 
network

Example network

0

1

2

3

4

Markovian PERT network

1C1A 1BSTART END

Activity 1

2ASTART END

Activity 2

3A

3B

ENDSTART
p

Activity 3

0 4

0 Dummy start

1

2

3

4

SCV in [0.33;0.5)

SCV = 1

SCV > 1

Dummy finish

Activity SCV



PH distributions: Example of a project 
network

Example network

0

1

2

3

4

Markovian PERT network

1C1A 1BSTART END

Activity 1

2ASTART END

Activity 2

3A

3B

ENDSTART
p

Activity 3

0 4

0 Dummy start

1

2

3

4

SCV in [0.33;0.5)

SCV = 1

SCV > 1

Dummy finish

Activity SCV

Every project network can be transformed 
in a Markovian PERT network (no matter 

which PH distributions are used).



PH distributions: What about low 
variability?



PH distributions: What about low 
variability?

SCV = 0.5 (1/2)

A BSTART END



PH distributions: What about low 
variability?

SCV = 0.5 (1/2)

A BSTART END

SCV = 0.25 (1/4)

A B CSTART ENDD



PH distributions: What about low 
variability?

SCV = 0.5 (1/2)

A BSTART END

SCV = 0.25 (1/4)

A B CSTART ENDD

SCV = 0.167 (1/6)

A B CSTART ENDD E F



PH distributions: What about low 
variability?

SCV = 0.5 (1/2)

A BSTART END

SCV = 0.25 (1/4)

A B CSTART ENDD

SCV = 0.167 (1/6)

A B CSTART ENDD E F

Low variability duration variability inflates the size of the 
Markovian PERT network.

=> 
Our model works best when duration variability is 

moderate to high.



Past work: example

Illustration of optimal policy



Past work: example

Illustration of optimal policy



Past work: example

Illustration of optimal policy



Past work: example

Illustration of optimal policy



Past work: example

Illustration of optimal policy



Past work: example

Illustration of optimal policy



Past work: example

Illustration of optimal policy



Past work: example

Illustration of optimal policy



Past work: example

Illustration of optimal policy



Past work: example

Illustration of optimal policy


