
Markovian PERT networks:
A new CTMC and benchmark

results

Stefan Creemers
(September 6, 2017)

Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three
sets: idle, ongoing, & finished activities

There are up to 3n states!

Need for a strict partitioning of the statespace!

Creemers, Leus, & Lambrecht (2010)

• Scheduling Markovian PERT networks to
maximize the net present value, Operations
Research Letters, 2010

• Studies the SNPV
• First to suggest a strict partitioning of the

statespace
• Use of UDCs to only store feasible states
• UDCs have later been adopted by:

– Wei et al. (2013) Expert Systems with Applications
– Coolen et al. (2015) Journal of Scheduling
– Gutin et al. (2015) Management Science
– Rostami et al. (2017) Journal of Scheduling
– Creemers (2015) Journal of Scheduling

Creemers (2015)

• Minimizing the expected makespan of a project
with stochastic activity durations under resource
constraints, Journal of Scheduling, 2015

• Studies the SRCPSP
• Uses CTMC of Kulkarni & Adlakha and the UDCs

of Creemers et al. (2010)
• Significantly improves procedure of Creemers et

al. (2010)
• To compare with Creemers et al. (2010), we adapt

Creemers (2015) to also solve the SNPV

2010 VS 2015
Number of instances solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

2010

Instances solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

2015

Instances solved

We use the dataset of Creemers et al. (2010) to compare
the performance of the 2010 & 2015 procedures.

2010 VS 2015
Average CPU time (sec)

On average, we improve computation
times by a factor of 43!

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 27

n = 40 0 7 2338

n = 50 0 100 52268

n = 60 1 2210 NA

n = 70 3 17496 NA

2010

Average CPU time (s)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 2

n = 40 0 1 92

n = 50 0 6 1048

n = 60 0 89 NA

n = 70 0 505 NA

2015

Average CPU time (s)

2010 VS 2015
Average number of states (per 1000)

Because we still use the same CTMC, however,
memory requirements remain unchanged…

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

2010

Average state-space size (per 1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

2015

Average state-space size (per 1000)

2010 VS 2015
Bottleneck

No matter how fast my procedure is, I’ll always
be limited by memory constraints!

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

2015

Average state-space size (per 1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 2

n = 40 0 1 92

n = 50 0 6 1048

n = 60 0 89 NA

n = 70 0 505 NA

2015

Average CPU time (s)

Think Homer!
Think! How can we

reduce memory
constraints?

What if I relax the
state space? What
if I only keep track

of the set of
finished activities?

New CTMC

• We Introduce a new CTMC where states are defined by
the set of finished activities

up to 2n states (instead of 3n states)

• We no longer use UDCs

no UDC network, no sorting, no tertiary values…

• Our procedure only generates feasible states in binary
order => binary search is used to quickly retrieve states

• Significantly reduces CPU times & memory requirements!

This almost sounds too good to be
true! Where is the catch?

If we only keep track
of the finished

activities, we do not
know which activities

are idle/ongoing!

We do know, however,
what activities are

eligible to start => we
can determine the

optimal set of ongoing
activities

Homer, fool! You’ll
have to enumerate
all possible subsets

to obtain the
optimal set!

On the other hand, we
had to do that anyway in
the old approach as well

=> perhaps it is not as
bad as it sounds!

Even better: we can
devise heuristics to

determine a “good” set
of ongoing activities!

But, if an activity is selected as a
member of the set of ongoing

activities in one state, does this
mean that it is also selected in

the next state? In this approach,
it is possible that activities are

preempted!

True! However, in
reality preemption is a
realistic assumption &
even if preemption is
not allowed, you have
a nice lower bound!

Enough! Can we
finally see some

results!

2015 VS 2016 (new CTMC)
Average CPU time (sec)

On average, we improve computation
times by a factor of 13!

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 2

n = 40 0 1 92

n = 50 0 6 1048

n = 60 0 89 NA

n = 70 0 505 NA

2015

Average CPU time (s)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 7

n = 50 0 1 82

n = 60 0 6 NA

n = 70 0 34 NA

2016

Average CPU time (s)

2015 VS 2016 (new CTMC)
Average number of states (per 1000)

On average, we reduce memory requirements
by a factor of 403!

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

2015

Average state-space size (per 1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 2

n = 30 0 2 17

n = 40 1 9 172

n = 50 2 40 1055

n = 60 4 175 NA

n = 70 8 593 NA

2016

Average state-space size (per 1000)

New CTMC
Instances solved & CPU times

We are able to solve way more
instances!

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

2016

Instances solved

New CTMC
Instances solved & CPU times

CPU times have become the new
bottleneck

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

2016

Instances solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 22

n = 50 0 1 476

n = 60 0 11 16869

n = 70 0 99 263012

2016

Average CPU time (s)

We use the new CTMC
to tackle the SNPV and

the PSRCPSP

Creemers (under review)
SNPV

• When solving the SNPV, activities are NOT preempted!
• Why preempt? To postpone a cash outflow as new

information becomes available on the progress of the
ongoing activities (e.g., an activity takes longer than
expected => we can postpone another activity/cash flow).

• In Markovian PERT networks, activities have exponentially
distributed durations

• The exponential distribution is memoryless
No new information becomes available on the progress of

activities!
 It doesn’t make sense to preempt activities!
• This finding is also confirmed in all our experiments

Creemers (also under review)
PSRCPSP

• RCPSP => PSPLIB instances
• We solve all instances of J30 & J60 with ease
• We solve 196 instances of J90 & 10 of J120
• Why preempt? To avoid a lockdown of a resource (e.g.,

a resource is captured by an activity that takes longer
than expected)

• For the deterministic RCPSP, the benefit of preemption
is limited

• For the PSRCPSP the benefit of preemption is
significant & increases with the size/complexity of the
network!

Conclusion

• New CTMC that only keeps track of finished
activities

• Significantly reduces memory requirements
when compared with CTMC of Kulkarni &
Adlakha

• Only “drawback” is that it allows activities to
be preempted

• There is no preemption when solving the
SNPV if activity durations are exponential

