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Kulkarni & Adlakha (1986)

• Markov and Markov-Regenerative PERT 
Networks, Operations Research, 1986

• 208 citations

• First to study Markovian PERT networks

• Use of a CTMC to model a network

• The states of the CTMC are defined by three 
sets: idle, ongoing, & finished activities

There are up to 3n states!

Need for a strict partitioning of the statespace!



Creemers, Leus, & Lambrecht (2010)

• Scheduling Markovian PERT networks to 
maximize the net present value, Operations 
Research Letters, 2010

• Studies the SNPV
• First to suggest a strict partitioning of the 

statespace
• Use of UDCs to only store feasible states
• UDCs have later been adopted by:

– Wei et al. (2013) Expert Systems with Applications
– Coolen et al. (2015) Journal of Scheduling
– Gutin et al. (2015) Management Science
– Rostami et al. (2017) Journal of Scheduling
– Creemers (2015) Journal of Scheduling



Creemers (2015)

• Minimizing the expected makespan of a project 
with stochastic activity durations under resource 
constraints, Journal of Scheduling, 2015

• Studies the SRCPSP
• Uses CTMC of Kulkarni & Adlakha and the UDCs

of Creemers et al. (2010)
• Significantly improves procedure of Creemers et 

al. (2010)
• To compare with Creemers et al. (2010), we adapt 

Creemers (2015) to also solve the SNPV



2010 VS 2015
Number of instances solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

2010

Instances solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 29

n = 50 30 30 4

n = 60 30 30 0

n = 70 30 22 0

2015

Instances solved

We use the dataset of Creemers et al. (2010) to compare 
the performance of the 2010 & 2015 procedures.



2010 VS 2015
Average CPU time (sec)

On average, we improve computation 
times by a factor of 43!

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 27

n = 40 0 7 2338

n = 50 0 100 52268

n = 60 1 2210 NA

n = 70 3 17496 NA

2010

Average CPU time (s)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 2

n = 40 0 1 92

n = 50 0 6 1048

n = 60 0 89 NA

n = 70 0 505 NA

2015

Average CPU time (s)



2010 VS 2015
Average number of states (per 1000)

Because we still use the same CTMC, however, 
memory requirements remain unchanged…

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

2010

Average state-space size (per 1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

2015

Average state-space size (per 1000)



2010 VS 2015
Bottleneck

No matter how fast my procedure is, I’ll always 
be limited by memory constraints!

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

2015

Average state-space size (per 1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 2

n = 40 0 1 92

n = 50 0 6 1048

n = 60 0 89 NA

n = 70 0 505 NA

2015

Average CPU time (s)



Think Homer! 
Think! How can we 

reduce memory 
constraints? 



What if I relax the 
state space? What 
if I only keep track 

of the set of 
finished activities?



New CTMC

• We Introduce a new CTMC where states are defined by 
the set of finished activities 

up to 2n states (instead of 3n states)

• We no longer use UDCs

no UDC network, no sorting, no tertiary values…

• Our procedure only generates feasible states in binary 
order => binary search is used to quickly retrieve states

• Significantly reduces CPU times & memory requirements!

This almost sounds too good to be 
true! Where is the catch?



If we only keep track 
of the finished

activities, we do not 
know which activities 

are idle/ongoing!



We do know, however, 
what activities are 

eligible to start => we 
can determine the 

optimal set of ongoing 
activities



Homer, fool! You’ll 
have to enumerate 
all possible subsets 

to obtain the 
optimal set!



On  the other hand, we 
had to do that anyway in 
the old approach as well 

=> perhaps it is not as 
bad as it sounds!



Even better: we can 
devise heuristics to 

determine a “good” set 
of ongoing activities!



But, if an activity is selected as a 
member of the set of ongoing 

activities in one state, does this 
mean that it is also selected in 

the next state? In this approach, 
it is possible that activities are 

preempted!



True! However, in 
reality preemption is a 
realistic assumption & 
even if preemption is 
not allowed, you have 
a nice lower bound!



Enough! Can we 
finally see some 

results!



2015 VS 2016 (new CTMC)
Average CPU time (sec)

On average, we improve computation 
times by a factor of 13!

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 2

n = 40 0 1 92

n = 50 0 6 1048

n = 60 0 89 NA

n = 70 0 505 NA

2015

Average CPU time (s)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 7

n = 50 0 1 82

n = 60 0 6 NA

n = 70 0 34 NA

2016

Average CPU time (s)



2015 VS 2016 (new CTMC)
Average number of states (per 1000)

On average, we reduce memory requirements 
by a factor of 403!

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 1

n = 20 0 4 55

n = 30 2 49 1560

n = 40 8 534 47073

n = 50 27 4346 526020

n = 60 92 42279 NA

n = 70 287 216028 NA

2015

Average state-space size (per 1000)

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 2

n = 30 0 2 17

n = 40 1 9 172

n = 50 2 40 1055

n = 60 4 175 NA

n = 70 8 593 NA

2016

Average state-space size (per 1000)



New CTMC
Instances solved & CPU times

We are able to solve way more 
instances!

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

2016

Instances solved



New CTMC
Instances solved & CPU times

CPU times have become the new 
bottleneck

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 30 30 30

n = 20 30 30 30

n = 30 30 30 30

n = 40 30 30 30

n = 50 30 30 30

n = 60 30 30 30

n = 70 30 30 30

2016

Instances solved

OS = 0.8 OS = 0.6 OS = 0.4

n = 10 0 0 0

n = 20 0 0 0

n = 30 0 0 0

n = 40 0 0 22

n = 50 0 1 476

n = 60 0 11 16869

n = 70 0 99 263012

2016

Average CPU time (s)



We use the new CTMC
to tackle the SNPV and 

the PSRCPSP



Creemers (under review)
SNPV

• When solving the SNPV, activities are NOT preempted!
• Why preempt? To postpone a cash outflow as new 

information becomes available on the progress of the 
ongoing activities (e.g., an activity takes longer than 
expected => we can postpone another activity/cash flow).

• In Markovian PERT networks, activities have exponentially 
distributed durations

• The exponential distribution is memoryless
No new information becomes available on the progress of 

activities!
 It doesn’t make sense to preempt activities!
• This finding is also confirmed in all our experiments



Creemers (also under review)
PSRCPSP

• RCPSP => PSPLIB instances
• We solve all instances of J30 & J60 with ease
• We solve 196 instances of J90 & 10 of J120
• Why preempt? To avoid a lockdown of a resource (e.g., 

a resource is captured by an activity that takes longer 
than expected)

• For the deterministic RCPSP, the benefit of preemption 
is limited

• For the PSRCPSP the benefit of preemption is 
significant & increases with the size/complexity of the 
network!



Conclusion

• New CTMC that only keeps track of finished 
activities

• Significantly reduces memory requirements 
when compared with CTMC of Kulkarni & 
Adlakha

• Only “drawback” is that it allows activities to 
be preempted

• There is no preemption when solving the 
SNPV if activity durations are exponential




