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Introduction

We study the NPV of a project where:
— Activities have general duration distributions
— Cash flows are incurred during the lifetime of the project

For such settings, most of the literature has focused on
determining the expected NPV (eNPV) of a project

Higher moments/distribution of project NPV are
currently determined using Monte Carlo simulation

We develop exact, closed-form expressions for the
moments of project NPV & develop an accurate
approximation of the NPV distribution itself
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Vw = ij fw () e” "t dt Vw = CWMfW(t) (—7) vy = cydu(r)
0

¢y = cash flow incurred at start of stage w

v, = NPV of cash flow ¢,

fw (t) = distribution of time until cash flow c,, is incurred

r = discount rate

My () (—7) = moment generating function of f, () about —r
¢, (1) = discount factor for stage w
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now fou ()
Dy = CW¢W (T) W

Using discount factor ¢,, (), we can obtain the moments of the NPV:
— Uy = Py (1)
- UVZ\/ - CW(QbW(ZT‘) _ ¢W(T‘))
— Yw = cw(@w(Br) — 3¢, (2r) ¢y, (1) + 265, (1) oy,
— 8y = ¢y (w(dr) — 46, (Br),(r) + 6</)W(2r)¢w(r) — 3¢y (1) a5*
The CDF & PDF of the NPV of ¢, are:

- G,(v)=1-E, (ln (%W) r‘l)
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Cw

Vw = CwP1(1) .. Py () vy = Cy 1_L:1¢i(r) Vw = Cw(pl,w(r)

* We can obtain the moments of the NPV of cash flow c,,:
— Uy = CW¢1,W(T)
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e The mean and variance of the distribution of time until
cash flow c,, is incurred is:

_ w
_ dl,W - Zl:l dl
2 _ w 2
— Siw T Li=1Si

* If stage w is preceded by a sufficient number of stages, f; ,,(t)

is normally distributed with mean d, ,,, and variance Slz’w

* If f1 () is normally distributed, the NPV of cash flow c,,, is
lognormally distributed!



Agenda

* Serial projects:

— NPV of a serial project



NPV of a serial project



NPV of a serial project

stage
1
(%1

C1



NPV of a serial project

stage
1
(%1

C1
stage o stage
1 w—1
vw—l
Cw-1



NPV of a serial project

stage
1
(%1
C1
stage} _ ____fstage
1
vw—l

w—1
Cw-1
-1

stage} _ ____fstage stage
1 w w
Uy

Cw



NPV of a serial project

C1
stage o stage
1 w-—1
CW—l
stage . stage stage
1 w—1 w




NPV of a serial project

We can obtain the moments of the NPV of the serial
project using exact, closed-form formula’s:



NPV of a serial project

We can obtain the moments of the NPV of the serial
project using exact, closed-form formula’s:

Mean p

Huw = Gy

Covariance matrix X,

Eoluw,w) = a5 =2 [0z — af)
Eo(w,x) = cpeehy (02 —a?) = 2o b B (w, w)

Central coskewness matrix I'.

Co(w,w,w) = .00 =y, (a5 — 3aza; + 2a%)
C.lw,w,x) = cgte D o{w, w,w)

Tofw,z,2) = cwcs (asba — azan (26% + b2 ) + 22b%)
Lo, zu) = c;lr:yhll"c[uf..x:rj

Clentral cokurtosis matrix &,
B (w,www) = 0,08 =t {ay—daga; + Goga®—3at)
G (w,ww,x) = c;lcrn!:-l@c[w:t:',w )
O (worm) =clel (aghy —20z0) (ba+b2) +aga? (bz+56%) - 30187
O (w.rrr) =cgel (aghs—agay (by+3baby ) +3az0% (baby +57) —3ab%)
G (w,w,x,y) :c;lc&,hlgc(u'.uar.z]
Ou(wery) =cileh B jwrrr)
Ocfw.ryy) = eweer ((0a—aza1) bshz— (hz+20%) ({2301 —aze®) bab ) + (aze® —a) 36°H7)
O.(w,zp.z) = ezle,o0(r)Oe(mw.ruu)

E-z: = I.'i']._lw_]_l:é‘i"j |5= = l::'?.,-;_]_lii.ii":l |ri-= = '13'_?-,;.—1(51"3 o = l':-‘ylg_llii.f'j
= 3,7 b = Ly ht = & 1)
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We develop a three-parameter lognormal distribution
that can be used to match the mean, variance, and
skewness of the true NPV distribution

The example below illustrates the accuracy of the three-
parameter lognormal distribution (Z;):
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Optimal sequence of stages

The problem to find the optimal sequence of stages
is equivalent to the Least Cost Fault Detection
Problem (LCFDP)

The LCFDP minimizes the cost of the sequential
diagnosis of a number of system components

In the absence of precedence relations, the optimal
sequence can be found in polynomial time

Efficient algorithms are available for the general case
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c1=-50 e Serial policies:
— 1-2-3
stage — 1-3-2
1 — 2-1-3
— 2-3-1
c,=-20 c3=-10 — 3-1-2
— 3-2-1
stage stage e Early-Start (ES) policy: Start 1 & 2.
2 3 Start 3 upon completion of 2.
f1(t)~Exp(1) * Optimal policy: Start 2. Start 1 & 3
£, () ~Exp(0.5) upon completion of 2.

p =200 r=0.1
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C1='50

stage
1

C2='20

stage stage
2 3

C3='1O

fr()~Exp(1)
f23(t)~Exp(0.5)

p = 200

r=20.1

* When do we incur the payoff?
— After stage 1?
— After stage 2&3?

 What discount factor do we use?
— ¢1(7)
— ¢23(7)

 There no longer exists a fixed

sequence/the sequence is
probabilistic

—>Approximations are required!
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NPV of a general project
Optimal policy

c1=-50 * Payoff is obtained after stage 2 &
after stages 1 & 3 that are executed in
stage parallel
1 * What discount factor do we use?
— ¢2(r) $1(1)
c2=-20 c3=-10 — ¢o(r) P3(r)

* The payoff is obtained after the
maximum duration of stages 1 & 3!

— We need to determine the discount
factor for this maximum distribution

fi(®)~Exp(1) = If this is not possible, approximations
f23(t)~Exp(0.5) are required!

p =200 r=0.1
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The example below illustrates the accuracy of the three-parameter
lognormal distribution (£;) for the ES and the optimal policy:

ES policy
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Conclusion

We obtain exact, closed-form expressions for the
moments of the NPV of serial projects

The distribution of the NPV of a serial project can
be approximated accurately using a three-
parameter lognormal distribution

The optimal sequence of stages can be found
efficiently

The eNPV of a general project can be obtained
using exact, closed-form expressions

Higher moments & the distribution of the NPV of
a general project can be approximated






