dinform®

ANNUAL MEETING

Discrete optimization:
A guantum revolution?

Stefan Creemers
Luis Fernando Pérez
October 18, 2023

a | ES EG KATHOLIEKE UNIVERSITEIT
SCHOOL OF MANAGEMENT L E U v E N

Quantum Computing

£ Qiskit

Universal quantum computer

Quantum
simulation

Grover-based
algorithms

PASQAL
D:\JAUC

The Quantum Computing Company™

Quantum annealing

Quantum
machine learning

Discrete optimization problems

Quantum
factorization

Discrete optimization problems

In the most general form:
optimize g(xq, X2, ..., X;y)
subject to
x; €EQ,Vi:0<i<n
(any other constraint)

Where:
* g(x) is the objective function that evaluates assignment x = {x{, x5, ..., x,, }.
* nis the number of decision variables.
* x; is the i*" decision variable.
* (); is the set of discrete values that can be assigned to decision variable x;.

Objective function and/or constraints do not have to be linear!

Examples include: 3SAT, knapsack, TSP, complex non-linear integer programming
problems, and most other OR problems discussed here at INFORMS

Basic unit of information: Classic vs quantum

Classical computing Quantum computing
e Bit. e Qubit.
e Can take on values 0 and 1. Can take on values 0 and 1.

* Can bein a superposition state.

* Only after observing the qubit, the
state collapses to basis state O or 1.

* The probability that the state of a
ubit collapses to 0 or 1 depends on
the superposition.

* In case of a uniform superposition,
there is a 50% chance to collapse into
either O or 1.

Solving the binary knapsack problem

_ 9 iy
*n = 3 items.
1 2 3
* Maximum weight W = 4. 2 ; ;
* Optimal solution value V* = 5. n=3 W=4 Ve =5
. X = {x11x2'x3} Wy = Zwixi Ve = Z UiXi
* Solution x = {x4, x5, ..., x,, }. f() = 1if W <W and V > V

* Weight of x is I/,.
* Value of x is V/,..

* Function f(x) evaluates whether solution x is valid; has weight I/,

that does not exceed weight capacity I/, and value V, is at least equal
toV".

Solving the binary knapsack problem

e Classical computing: e w
* Full enumeration requires 2™ = 8 calls to 1 2 3
function f(x). 2 3 1
 Each call to f(x) requires) operations. 3 2 2
* In case of knapsack, n = O(n) =» full n=3 W =4 V=5
enumeration has complexity O(n2"). X = {X1, %y, X3) W, = 3 wx; V. =Y vx;
* Best classical algorithm to solve binary f(x) =1ifW, <W and V, > V*

knapsack has complexity O(n\/Z_").
* Quantum computing:

* Given a (uniform) superposition of three 000 0 0 0.125
qubits, only a single call'to f(x)is 100 2 3 0.125
required to obtain f (x) for each possible 010 3 1 0.125
solution =» complexity O(n)? 110 5 4 0.125

* Each solution, however, has probability 001 2 2 0.125
27 ™ =0.125 to be measured = we only 101 4 5 0.125
have a 12.5% chance to measure 101. 011 5 3 0.125

111 7 6 0.125

Grover’s algorith

\ \ - :) \ 'I
_\ 3\ ‘ \\ \\ L%
5N \
. N ny \
~ ‘ \ . \)‘ \ 1
ke "«;': AA 3

m

Grover’s algorithm maximizes the probability to
measure a solution x that has f(x) = 1 using

roughly /2™ /m iterations, where m is the
number of solutions for which f(x) = 1.

In our example, there is only one solution (i.e., 101)
thathas f(x) = 1;thathasV = I/*(i.e.,, m = 1).

If m = 1, to find 101, Grover’s algorithm needs
roughly v/ 2™ iterations (and hence calls to f(x)).

To find 101 on a classical computer, we need up
to 2™calls to f(x) if we use full enumeration =
Grover’s algorithm achieves a quadratic speedup?

When using Grover’s algorithm to solve discrete
optimization problems, we face two problems:
 We don’t know m.
 We don’t know I/,

Binary Search Procedure (BSP)

* To solve these problems, we propose a Binary Search Procedure
(BSP).

* First, to find the optimal value V", BSP initializes a minimum value
Vin and a maximum value 1/, ,,.. Next, binary search is used to
evaluate different values of IV until V'™ is identified.

* For each value V/, BSP also evaluates different values of m:

* If, for a given value of m, a valid solution x is measured (that has value V, >
V),weletV,,;,, =V +1.

* If no valid solution can be found, we letl/,,,, =V — 1.

* Million-dollar question: do we still achieve a quadratic speedup?

|

nV2n

|

BSP: Results and complexity

90

80

70

60

50

40

30

20

10

0

e—Set 1 Set 2 Set 3 Set 4 Set5 Set 6

Large range of values (L is big)

Small range of values (L is small)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n

We use BSP to solve 1000 knapsack
problems for:

* Valuesof n € [3, ..., 20].
* 6 problem sets

We report the expected number of
operations required to solve a knapsack

problem (k) divided by n\/ﬁ.

Complexity BSP is O(nLv2™), where L
is a logarithmic term depending on the
range of values of knapsack items.

No quadratic speedup due to logarithmic
term L, however: can we do better?

|

nV2n

|

Random Ascent Procedure (RAP)

4.5

3.5

2.5

1.5

0.5

10 11 12

set 2

13

14

set3

set4

set5

15

16

17

18

19

20

* |terative procedure that uses
Grover’s algorithm to find a
solution that has a better value
than the best-found solution.

* If we measure, a better solution is
chosen at random from the set of
solutions that can still improve the
best-found solution.

* RAP has worst-case expected
complexity O (nv2m).

* recall that for knapsack the best
classical algorithm also has

complexity O (nv?2n).

|

nV2n

|

Hybrid Branch-and-Bound (HBB)

10

10

—set 1

11

12

set 2

13

14

set3

set4

set5

15

16

17

18

set 6

19

20

Uses a tree that has n levels.

At each level i, you create a node for
each discrete value that can be assigned
to decision variable x; (i.e., you create a
partial solution where the first i decision
variables have been assigned a value).

In each node, we use Grover’s algorithm
to see if we can find a solution for the
remaining n — [decision variables that

improves the best-found solution:
* |f such a solution can be found, we branch.
* |f no solution can be found, we fathom the node.

HBB also has complexity O (17v/2™).

RAP versus HBB (solving to optimality)

RAP

set 2 set3 set4 set5 set 6

setl

10

|

K
nv2n

|

10 11 12

13 14 15 16 17 18 19 20

10

10

setl set 2 set3 set4 set5 set 6
e —
Bl]
11 12 13 14 15 16 17 18 19 20
n

|

nv2n

|

RAP vs HBB (finding optimal solution for 1t time)

setl set 2 set3 set4 set5 set 6
R R
———— B—— e R S R — —
L ——
\
10 11 12 13 14 15 16 17 18 19 20

setl set 2 set3 set4 set5 set 6
10 11 12 13 14 15 16 17 18 19 20
n

|

|

RAP: Time to find optimal solution versus
time to find optimal solution for 15t time

RAP RAP

nv2n

HBB: Time to find optimal solution versus
time to find optimal solution for 15t time

HBB HBB

|

nv2n

N w IN (% o)) ~ 00 © o
wv
o
~+
[
w
o]
°
N
%)
o]
jed
w
w
]
~+
I
wv
o)
~
n
wv
I
~
(o))

Conclusions

* We identified the problems faced when using Grover’s algorithm to solve
discrete optimization problems.

 We use Grover’s algorithm as a subroutine in:

e BSP (Binary Search Procedure).
 RAP (Random Ascent Procedure).
* HBB (Hybrid Branch-and-Bound).

* We use these algorithms to solve 108000 binary knapsack problems.

* We show that:
* RAP & HBB require at most 0 (1+/2™) operations to find the optimal solution.
 RAP & HBB match performance of best classical algorithms when solving knapsack.
 RAP & HBB can also be used as heuristics using far less operations.
 RAP & HBB can be used to solve ANY discrete optimization problem to optimality.

Will quantum computing cause a revolution in the field of discrete
optimization?

Scan the QR or use
link to join

Yes [S
No 0%
https://forms.office.com
/e/GcViSTDZzN
O copy link

— . @ e O]

4 responses submitted

100%

Want to know more?

e Read our three papers (currently under review):
 Discrete optimization: A quantum revolution (Part I).
 Discrete optimization: A quantum revolution (Part Il).
* Discrete optimization: Limitations of existing quantum algorithms.

* Available on SSRN and on my personal website (www.cromso.com).

* Coming soon to arXiv.

 Contact us:
* sc@cromso.com
e | fernando@ieseg.fr

http://www.cromso.com/
mailto:sc@cromso.com
mailto:l.fernando@ieseg.fr

	Slide 1: Discrete optimization: A quantum revolution?
	Slide 2
	Slide 3: Discrete optimization problems
	Slide 4: Basic unit of information: Classic vs quantum
	Slide 5: Solving the binary knapsack problem
	Slide 6: Solving the binary knapsack problem
	Slide 7: Grover’s algorithm
	Slide 8: Binary Search Procedure (BSP)
	Slide 9: BSP: Results and complexity
	Slide 10
	Slide 11: Random Ascent Procedure (RAP)
	Slide 12: Hybrid Branch-and-Bound (HBB)
	Slide 13: RAP versus HBB (solving to optimality)
	Slide 14: RAP vs HBB (finding optimal solution for 1st time)
	Slide 16: RAP: Time to find optimal solution versus time to find optimal solution for 1st time
	Slide 17: HBB: Time to find optimal solution versus time to find optimal solution for 1st time
	Slide 18: Conclusions
	Slide 19
	Slide 20: Want to know more?

