
Discrete Optimization
A Quantum Revolution?

Stefan Creemers
Luis Fernando Pérez

Universal quantum computer Quantum annealing

Quantum Computing

Grover-based
algorithms

Quantum
factorization

Quantum
simulation

Quantum
machine learning

Discrete optimization problems

Discrete optimization problems

• In the most general form:
• x optimize 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛)
• x subject to
• x 𝑥𝑖 ∈ Ω𝑖 , ∀𝑖: 0 ≤ 𝑖 ≤ 𝑛
• x (any other constraint)

• Where:
• 𝑔(𝒙) is the objective function that evaluates assignment 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑛}.
• 𝑛 is the number of decision variables.
• 𝑥𝑖 is the 𝑖th decision variable.
• Ω𝑖 is the set of discrete values that can be assigned to decision variable 𝑥𝑖.

• Objective function and/or constraints do not have to be linear!

• Examples include: 3SAT, knapsack, TSP, complex non-linear integer programming
problems, and most other OR problems discussed here at IOS!

Basic unit of information: Classic vs quantum

Classical computing

• Bit.

• Can take on values 0 and 1.

Quantum computing

• Qubit.

• Can take on values 0 and 1.

• Can be in a superposition state.

• Only after observing the qubit, the
state collapses to basis state 0 or 1.

• The probability that the state of a
qubit collapses to 0 or 1 depends on
the superposition.

• In case of a uniform superposition,
there is a 50% chance to collapse into
either 0 or 1.

0 1

?

Solving the binary knapsack problem

• 𝑛 = 3 items.

• Maximum weight 𝑊 = 4.

• Optimal solution value 𝑉∗ = 5.

• Solution 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑛}.

• Weight of 𝒙 is 𝑊𝒙.

• Value of 𝒙 is 𝑉𝒙.

• Function 𝑓 𝒙 evaluates whether solution 𝒙 is valid; has weight 𝑊𝒙
that does not exceed weight capacity 𝑊, and value 𝑉𝒙 is at least equal
to 𝑉∗.

𝑖 𝑤𝑖 𝑣𝑖

1 2 3

2 3 1

3 2 2

𝑛 = 3 𝑊 = 4 𝑉∗ = 5

𝒙 = {𝑥1, 𝑥2, 𝑥3} 𝑊𝒙 = σ 𝑤𝑖𝑥𝑖 𝑉𝒙 = σ 𝑣𝑖𝑥𝑖

𝑓 𝒙 = 1 if 𝑊𝒙 ≤ 𝑊 and 𝑉𝒙 ≥ 𝑉∗

Solving the binary knapsack problem

• Classical computing:
• Full enumeration requires 2𝑛 = 8 calls to

function 𝑓 𝒙 .
• Each call to 𝑓 𝒙 requires 𝜂 operations.
• In case of knapsack, 𝜂 = 𝑂(𝑛) ➔ full

enumeration has complexity 𝑂(𝑛2𝑛).
• Best classical algorithm to solve binary

knapsack has complexity 𝑂(𝑛 2𝑛).

• Quantum computing:
• Given a (uniform) superposition of three

qubits, only a single call to 𝑓 𝒙 is
required to obtain 𝑓 𝒙 for each possible
solution ➔ complexity 𝑂(𝑛)?

• Each solution, however, has probability
2−𝑛 = 0.125 to be measured ➔ we only
have a 12.5% chance to measure 101.

𝑖 𝑤𝑖 𝑣𝑖

1 2 3

2 3 1

3 2 2

𝑛 = 3 𝑊 = 4 𝑉∗ = 5

𝒙 = {𝑥1, 𝑥2, 𝑥3} 𝑊𝒙 = σ 𝑤𝑖𝑥𝑖 𝑉𝒙 = σ 𝑣𝑖𝑥𝑖

𝑓 𝒙 = 1 if 𝑊𝒙 ≤ 𝑊 and 𝑉𝒙 ≥ 𝑉∗

𝒙 𝑊𝒙 𝑉𝒙 𝑓 𝒙 𝑃(𝑥)
000 0 0 0 0.125
100 2 3 0 0.125
010 3 1 0 0.125
110 5 4 0 0.125
001 2 2 0 0.125
101 4 5 1 0.125
011 5 3 0 0.125
111 7 6 0 0.125

Grover’s algorithm

• Grover’s algorithm maximizes the probability to
measure a solution 𝒙 that has 𝑓 𝒙 = 1 using

roughly 2𝑛/𝑚 iterations, where 𝑚 is the
number of solutions for which 𝑓 𝒙 = 1.

• In our example, there is only one solution (i.e., 101)
that has 𝑓 𝒙 = 1; that has 𝑉 ≥ 𝑉∗(i.e., 𝑚 = 1).

• If 𝑚 = 1, to find 101, Grover’s algorithm needs
roughly 2𝑛 iterations (and hence calls to 𝑓 𝒙).

• To find 101 on a classical computer, we need up
to 2𝑛calls to 𝑓 𝒙 if we use full enumeration ➔
Grover’s algorithm achieves a quadratic speedup?

• When using Grover’s algorithm to solve discrete
optimization problems, we face two problems:
• We don’t know 𝑚.
• We don’t know 𝑉∗.

Binary Search Procedure (BSP)

• To solve these problems, we propose a Binary Search Procedure
(BSP).

• First, to find the optimal value 𝑉∗, BSP initializes a minimum value
𝑉𝑚𝑖𝑛 and a maximum value 𝑉𝑚𝑎𝑥. Next, binary search is used to
evaluate different values of 𝑉 until 𝑉∗ is identified.

• For each value 𝑉, BSP also evaluates different values of 𝑚:
• If, for a given value of 𝑚, a valid solution 𝒙 is measured (that has value 𝑉𝒙 ≥

𝑉), we let 𝑉𝑚𝑖𝑛 = 𝑉 + 1 .

• If no valid solution can be found, we let 𝑉𝑚𝑎𝑥 = 𝑉 − 1.

• Million-dollar question: do we still achieve a quadratic speedup?

BSP: Results and complexity

• We use BSP to solve 1000 knapsack
problems for:
• Values of 𝑛 ∈ 3, … , 20 .

• 6 problem sets

• We report the expected number of
operations required to solve a knapsack
problem (𝜅) divided by 𝜂 2𝑛.

• Complexity BSP is 𝑂(𝜂𝐿 2𝑛), where 𝐿
is a logarithmic term depending on the
range of values of knapsack items.

• No quadratic speedup due to logarithmic
term 𝐿, however: can we do better?

0

10

20

30

40

50

60

70

80

90

3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Large range of values (𝐿 is big)

Small range of values (𝐿 is small)

𝑛

𝐸
𝜅

𝜂
2

𝑛

Random Ascent Procedure (RAP)

• Iterative procedure that uses
Grover’s algorithm to find a
solution that has a better value
than the best-found solution.

• If we measure, a better solution is
chosen at random from the set of
solutions that can still improve the
best-found solution.

• RAP has worst-case expected
complexity 𝑂(𝜂 2𝑛).

• recall that for knapsack the best
classical algorithm also has
complexity 𝑂(𝜂 2𝑛).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

set 1 set 2 set 3 set 4 set 5 set 6

𝑛

𝐸
𝜅

𝜂
2

𝑛

Hybrid Branch-and-Bound (HBB)

• Uses a tree that has 𝑛 levels.
• At each level 𝑖, you create a node for

each discrete value that can be assigned
to decision variable 𝑥𝑖 (i.e., you create a
partial solution where the first 𝑖 decision
variables have been assigned a value).

• In each node, we use Grover’s algorithm
to see if we can find a solution for the
remaining 𝑛 − 𝑖 decision variables that
improves the best-found solution:
• If such a solution can be found, we branch.
• If no solution can be found, we fathom the node.

• HBB also has complexity 𝑂(𝜂 2𝑛).0

1

2

3

4

5

6

7

8

9

10

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

set 1 set 2 set 3 set 4 set 5 set 6

𝑛

𝐸
𝜅

𝜂
2

𝑛

HBB: Time to find optimal solution versus
time to find optimal solution for 1st time

𝑛

𝐸
𝜅

𝜂
2

𝑛

𝑛

0

1

2

3

4

5

6

7

8

9

10

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

HBB

set 1 set 2 set 3 set 4 set 5 set 6

0

1

2

3

4

5

6

7

8

9

10

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

HBB

set 1 set 2 set 3 set 4 set 5 set 6

Conclusions

• We identified the problems faced when using Grover’s algorithm to solve
discrete optimization problems.

• We use Grover’s algorithm as a subroutine in:
• BSP (Binary Search Procedure).
• RAP (Random Ascent Procedure).
• HBB (Hybrid Branch-and-Bound).

• We use these algorithms to solve 108000 binary knapsack problems.
• We show that:

• RAP & HBB require at most 𝑂(𝜂 2𝑛) operations to find the optimal solution.
• RAP & HBB match performance of best classical algorithms when solving knapsack.
• RAP & HBB can also be used as heuristics using far less operations.
• RAP & HBB can be used to solve ANY discrete optimization problem to optimality.

Want to know more?

• Read our three papers (currently under review):
• Discrete optimization: A quantum revolution (Part I).

• Discrete optimization: A quantum revolution (Part II).

• Discrete optimization: Limitations of existing quantum algorithms.

• Available on SSRN and on my personal website (www.cromso.com).

• Contact us:
• sc@cromso.com

• l.fernando@ieseg.fr

http://www.cromso.com/
mailto:sc@cromso.com
mailto:l.fernando@ieseg.fr

EURO 2024 Copenhagen:
Session on quantum computing

Invitation code:
7586e1c4

Stream:
Quantum Computing

Optimization

Session:
Quantum Computing &

Optimization III

	Slide 1
	Slide 2
	Slide 3: Discrete optimization problems
	Slide 4: Basic unit of information: Classic vs quantum
	Slide 5: Solving the binary knapsack problem
	Slide 6: Solving the binary knapsack problem
	Slide 7: Grover’s algorithm
	Slide 8: Binary Search Procedure (BSP)
	Slide 9: BSP: Results and complexity
	Slide 10
	Slide 11: Random Ascent Procedure (RAP)
	Slide 12: Hybrid Branch-and-Bound (HBB)
	Slide 13: HBB: Time to find optimal solution versus time to find optimal solution for 1st time
	Slide 14: Conclusions
	Slide 15: Want to know more?
	Slide 16: EURO 2024 Copenhagen: Session on quantum computing

