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Introduction

Introduction: Module Networks

Our goal is to maximize the NPV of projects in which:
® activities can fail,
® activities that pursue the same result may be grouped in “modules”,
® each module needs to be successful for the project to succeed,
® a module is successful if at least one of its activities succeeds

= not all activities in the network have to be started in order for the
project to be successful,

= upon failure of all activities in the module, the module fails,
resulting in overall project failure.

This is common in R&D (especially in NPD) but also in other sectors:
pharmaceuticals, software development, fundraising . ..
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Example: Definitions
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- Failures: Each activity j has a probability of technical success p;
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Example: Policy I,

AL

A solution is not a schedule but rather a scheduling policy (even with
deterministic durations)

Policy /7; results in a NPV of -6.35ms if activity durations are deterministic |

Policy 77 is optimal for deterministic durations and yields a NPV of 2.05m$
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Backward SDP-recursion: concepts & definitions

Exponentially distributed activity durations = use of a Continuous-Time
Markov Chain (CTMC) to model the statespace.

The state of an activity j at time t can be:
e Q;(t) = 0: not started,
e Q;(t) = 1: in progress,
e Q;(t) = 2: past (successfully finished, failed or considered

redundant because its module is completed).

The state of the system at a time instance t is given by vector

Q(t) = {Qo(t),...,Q4(t)}.

The size of the statespace has upper bound 3"”. Most states do not
satisfy precedence constraints = a strict definition of the statespace is
required and provided in Creemers et al. (2008).
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Discount factor = 0.91

Probability of finishing activity j first : (1/D;)x(SUM(1/D;))-!
=> Probability 3 finishes first = 50% & pz: = 100%

0.5 x 0.91 x 1.00 x 318.75 = 144.89

=> Probability 4 finishes first = 50% & ps = 0.85%

0.5 x 0.91 x 0.85 x 375 = 144.89

=> NPV upon state entry = 289.77
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3 possible decisions (pick the optimal one):
- Start activity 3 => incur cost ¢c3 = -5M$
=>end up in (2,2,1,0,0)

- Start activity 4 => incur cost ¢4 = -5M$
=>end up in (2,2,0,1,0)

- Start activity 3 & 4 => incur cost ¢c3 + ¢4 = -10M$
=>end up in (2,2,1,1,0)[289.77ms]
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Conclusion

Example: Stochastic Durations
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A solution is not a schedule but rather a scheduling policy (even with
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Conclusion

Results & Future Research

Computational results:

® 100 project networks were generated varying in size from 75
activities up to 120 activities. Out of these project networks, 75
have been solved to optimality.

e Computation times vary from less than a second to a maximum of
81,593 seconds. The average computation time for those networks
solved amounts to 4,808 seconds.

® The main determinant of the computation time is the density of the
network.

Future research:
e Using the model to generate insights in the use of modules
e General activity durations using Phase-Type distributions

® Resources
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