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n OS % Solved
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(improved)

Average
Factor

10 0.8 100% 0.00 0.00 - 70 0.8 100% 3.19 0.24 13.09

10 0.6 100% 0.00 0.00 - 70 0.6 73% 17,495.49 378.64 46.21

10 0.4 100% 0.00 0.00 6.81 70 0.4 0% - - -

20 0.8 100% 0.00 0.00 - 80 0.8 100% 10.81 0.79 13.65

20 0.6 100% 0.01 0.00 27.25 80 0.6 30% 72,473.41 1,188.01 61.00

20 0.4 100% 0.46 0.03 17.60 80 0.4 0% - - -

30 0.8 100% 0.01 0.00 17.53 90 0.8 100% 50.64 3.15 16.06

30 0.6 100% 0.33 0.02 14.90 90 0.6 0% - - -

30 0.4 100% 26.92 1.49 18.12 90 0.4 0% - - -

40 0.8 100% 0.03 0.00 12.41 100 0.8 100% 171.42 9.60 17.85

40 0.6 100% 6.62 0.49 13.62 100 0.6 0% - - -

40 0.4 97% 2,337.96 72.25 32.36 100 0.4 0% - - -

50 0.8 100% 0.15 0.01 10.60 110 0.8 100% 1,193.88 40.93 29.17

50 0.6 100% 100.28 4.43 22.62 110 0.6 0% - - -

50 0.4 13% 52,267.30 823.71 63.45 110 0.4 0% - - -

60 0.8 100% 0.74 0.06 12.36 120 0.8 100% 12,789.06 260.66 49.06

60 0.6 100% 2,210.08 67.87 32.56 120 0.6 0% - - -

60 0.4 0% - - - 120 0.4 0% - - -

Improvement of the SDP recursion
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Improvement of the SDP recursion

In comparison with the model of Creemers et al. (2010), 
the computation speed has been increased by factor 50 

(= 5,000% faster). 

When compared to the model of Sobel et al. (2009), the 
new model is even 750,000% faster.
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Model extensions: PH distributions

• Introduced by Neuts in 1981

• A Phase Type (PH) distribution is a mixture of 
exponential distributions

• The exponential, Erlang, Coxian, and hyper-
exponential distribution are all examples of a PH 
distribution

• We use simple PH distributions to match the first 
two moments of the distribution of the activity 
duration (more advanced PH distributions, 
however, can also be used)
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Every project network can be transformed 
in a Markovian PERT network (no matter 

which PH distributions are used).
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SCV = 0.5 (1/2)

A BSTART END

SCV = 0.25 (1/4)

A B CSTART ENDD
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Low variability duration variability inflates the size of the 
Markovian PERT network.

=> 
Our model works best when duration variability is 

moderate to high.
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Results: Solution quality

• We optimize over a more general class of policies 
=> we expect better results.

• From Ballestìn & Leus (2009) we obtained the 
results for the J30 & J60 problem instances if 
activity durations are exponentially distributed:

– J30 average improvement of solution quality of 13,2%

– J60 average improvement of solution quality of 13,5%

=> Significant improvement of solution quality!
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Results: Computational performance 
(J30 - PSPLIB)

Stork (2001) was able to solve 179 out of 480 (37%) of the J30 
problem instances. Even if activity durations have limited 

variability, we outperform Stork. In addition, we optimize over a 
class of policies that is more general!
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Results: Computational performance 
(J60 - PSPLIB)

Stork (2001) was able to solve 11 out of 480 (2%) of the 
J60 problem instances. We solve 227 instances (47%) if 

activity durations are exponentially distributed.
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Contributions

We improve the SDP recursion of Creemers et al. 
(2010) and obtain an increase in computational 

efficiency of 5,000%.

We extend the model of Creemers et al. (2010) in 
order to solve the SRCPSP. We add resource 

constraints, general activity durations, and use a 
minimum-makespan objective.

Solving the SRCPSP makes sense if activities have 
moderate- to high levels of duration variability. For 

this setting, our model outperforms the state-of-the 
art (both in solution quality & in computation speed).




