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Abstract - We investigate project scheduling with stochastic activity durations
to maximize the expected net present value. Individual activities also carry a
risk of failure, which can cause the overall project to fail. In the project planning
literature, such technological uncertainty is typically ignored and project plans
are developed only for scenarios in which the project succeeds. To mitigate
the risk that an activity’s failure jeopardizes the entire project, more than one
alternative may exist for reaching the project’s objectives. We propose a model
that incorporates both the risk of activity failure and the possible pursuit of
alternative technologies. We find optimal solutions to the scheduling problem
by means of stochastic dynamic programming. Our algorithms prescribe which
alternatives need to be explored, and how they should be scheduled. We also
examine the impact of the variability of the activity durations on the project’s
value.
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1 Introduction

Projects in many industries are subject to considerable uncertainty, due to many possible
causes. Factors influencing the completion date of a project include activities that are
required but that were not identified beforehand, activities taking longer than expected,
activities that need to be redone, resources being unavailable when required, late deliveries,
etc. In research and development (R&D) projects, there is also the risk that activities may
fail altogether, requiring the project to be halted completely. This risk is often referred to
as technical risk. In this text, we focus on two main sources of uncertainty in R&D projects,
namely uncertain activity durations and the possibility of activity failure: we incorporate
the concept of activity success or failure into the analysis of projects with stochastic activity
durations, where the successful completion of an activity can correspond to a technological
discovery or scientific breakthrough. We examine the impact of these two factors on optimal
planning strategies that maximize the project’s value, and on its value itself.

This work is a continuation of De Reyck and Leus [12], where an algorithm is developed
for project scheduling with uncertain activity outcomes and where project success is achieved
only if all individual activities succeed. Reference [12] constituted the first description of an
optimal approach for handling activity failures in project scheduling, but neither stochastic
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activity durations nor the possibility of pursuing multiple alternatives for the same result,
and the inherent possibility of activity selection, were accounted for. Earlier work studied
optimal procedures for special cases; see Chun [8], for instance. Other references relevant to
this text stem from the discipline of chemical engineering, mainly the work by Grossmann
and his colleagues (e.g., [33, 21]), who studied the scheduling of failure-prone new-product
development (NPD) testing tasks when non-sequential testing is admitted. They point out
that in industries such as chemicals and pharmaceuticals, the failure of a single required en-
vironmental or safety test may prevent a potential product from reaching the marketplace,
which has inspired our modeling of possible activity and project failure. Therefore, our mod-
els are also of particular interest to drug-development projects, in which stringent scientific
procedures have to be followed in distinct stages to ensure patient safety, before a medicine
can be approved for production. Such projects may need to be terminated in any of these
stages, either because the product is revealed not to have the desired properties or because
of harmful side effects. Illustrations of modeling pharmaceutical projects, with a focus on
resource allocation, can be found in Gittins and Yu [16] and Yu and Gittins [39].

Due to the risk of activity failure resulting in overall project failure, it has been suggested
that R&D projects should explore multiple alternative ways for developing new products
(Sommer and Loch [35]). To mitigate the risk that an individual activity’s failure jeopar-
dizes the entire project, we model projects in which the same (intermediate or final) outcome
can be pursued in several different ways, where one success allows the project to continue.
The different attempts can be multiple trials of the same procedure or the pursuit of different
alternative ways to achieve the same outcome, e.g., the exploration of alternative technolo-
gies. Following Baldwin and Clark [3], a unit of alternative interdependent tasks with a
distinguished deliverable will be called a module.

Project profitability is often measured by the project’s net present value (NPV), the
discounted value of the project’s cash flows. This NPV is affected by the project schedule
and therefore, the timing of expenditures and cash inflows has a major impact on the project’s
financial performance, especially in capital-intensive industries. The goal of this article is to
find optimal scheduling strategies that maximize the expected NPV (eNPV) of the project
while taking into account the activity costs, the cash flows generated by a successful project,
the variability in the activity durations, the precedence constraints, the likelihood of activity
failure and the option to pursue multiple trials or technologies. Thus, this article extends the
work of Buss and Rosenblatt [6], Benati [5], Sobel et al. [34] and Creemers et al. [10], who
focus on duration risk only, and of Schmidt and Grossmann [33], Jain and Grossmann [21] and
De Reyck and Leus [12], who look into technical risk only (although Schmidt and Grossmann
[33] also explore the possibility of introducing multiple discrete duration scenarios).

Our contributions are fourfold: (1) we introduce and formulate a generic model for op-
timal scheduling of R&D activities with stochastic durations, non-zero failure probabilities
and modular completion subject to precedence constraints; to the best of knowledge, such
a model has never been studied before; (2) we develop a dynamic-programming recursion
to determine an optimal policy for executing the project while maximizing the project’s
eNPV, extending the algorithm of Creemers et al. [10] with activity failures, multiple trials
and phase-type (PH) distributed activity durations instead of exponentials; (3) we conduct
numerical experiments to demonstrate the computational capabilities of the algorithm; and
(4) we examine the impact of activity duration risk on the optimal scheduling policy and
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project values. Interestingly, our findings indicate that higher operational variability does
not always lead to lower project values, meaning that (sometimes costly) variance reduction
strategies are not always advisable. To the best of our knowledge, this is the first article to
numerically support such a recommendation.

The remainder of this text is organized as follows. In Section 2, we provide the necessary
definitions and a detailed problem statement. We produce solutions by means of a backward
dynamic-programming recursion for a Markov decision process, which is discussed in Sec-
tion 3. Section 4 reports on our computational performance on a representative set of test
instances. In Section 5, a computational experiment is described in which we examine the
effect of activity duration variability on the eNPV of a project and Section 6 evaluates two
different choices for the policy class to be considered. Section 7 contains a brief summary of
the text.

2 Definitions and problem statement

2.1 Stochastic project scheduling

A project consists of a set of activities N = {0, . . . , n}. The execution of a project with
stochastic components (in our case, stochastic activity outcomes and durations) is a dynamic
decision process. A solution, therefore, cannot be represented by a schedule but takes the
form of a policy : a set of decision rules defining actions at decision times, which may
depend on the prior outcomes. Decision times are typically the start of the project and
the completion times of activities; a tentative next decision time can also be specified by
the decision maker. An action entails the start of a precedence-feasible set of activities
(see Section 2.2 for a statement of the precedence constraints). In this way, a schedule is
constructed gradually as time progresses. Next to the information available at the start of the
project, a decision at time t can only use information on duration realizations and activity
outcomes that has become available before or at time t; this is the so-called non-anticipativity
constraint. Activities should be executed without interruption.

Each activity i ∈ N\{n} has a probability of technical success pi; we assume that p0 = 1.
We do not consider (renewable or other) resource constraints and assume the outcomes of
the different tasks to be independent. We define a success (state) vector as an n-component
binary vector x = (x0, x1, . . . , xn−1), with one component associated with each activity in
N \ {n}. We let Xi represent the Bernoulli random variable with parameter pi as success
probability for each activity i, and we write X = (X0, X1, . . . , Xn−1). Information on an
activity’s success (the realization of Xi) becomes available only at the end of that activity.
We say that x is a realization or scenario of X. The duration Dj ≥ 0 of each activity j is also
a stochastic variable; the vector (D0, D1, . . . , , Dn) is denoted by D. We use lowercase vector
d = (d0, . . . , , dn) to represent one particular realization of D, and we assume Pr[D0 = 0] =
Pr[Dn = 0] = 1.

We assume that all activity cash flows during the development phase are non-positive,
which is typical for R&D projects: the (known) cash flow associated with the execution
of activity i ∈ N\{n} is represented by the integer value ci ≤ 0 and is incurred at the
start of the activity. We choose c0 = 0. If the project is successful (see Section 2.2 for the
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specific conditions under which this is true) then the final activity n can be executed. This
corresponds with obtaining an end-of-project payoff C ≥ 0, which is received at the start
of activity n (which is also its completion time). The value si ≥ 0 represents the starting
time of activity i; we call the (n + 1)-vector s = (s0, s1, . . . , sn) a schedule, with si ≥ 0 for
all i ∈ N . We assume s0 = 0 in what follows: the project starts at time zero. The value
si = +∞ means that activity i will not be executed at all.

We follow Igelmund and Radermacher [20], Möhring [27] and Stork [36], who study project
scheduling with resource constraints and stochastic activity durations, in interpreting every
scheduling policy Π as a function Rn−1

≥ × Bn → Rn+1
≥ , with R≥ the set of non-negative

reals and B = {0, 1}. The function Π maps given samples (d,x) of activity durations and
success vectors to vectors s(d,x; Π) of feasible activity starting times (schedules). For a
given duration scenario d, success vector x and policy Π, sn(d,x; Π) denotes the makespan
of the schedule, which coincides with project completion. Note that not all activities need to
be completed (or even started) by sn, nor that the realization of all Xi’s needs to be known.

We compute the NPV for schedule s as

f(s) = Ce−rsn +
n−1∑
i=1
si 6=∞

cie
−rsi , (1)

with r a continuous discount rate chosen to represent the time value of money: the present
value of a cash flow c incurred at time t equals ce−rt, where e is the base of the natural
logarithm. Our goal in this article is to select a policy Π∗ that maximizes E[f(s(D,X; Π))],
with E[·] the expectation operator with respect to D and X; we write E[f(Π)], for short.
The generality of this problem statement suggests that optimization over the class of all
policies is probably computationally impractical. We therefore restrict our optimization to a
subclass that has a simple combinatorial representation and where decision points are limited
in number: our solution space P consists of all policies that start activities only at the end
of other activities (activity 0 is started at time 0). The solution space also contains policy
Π0, which corresponds with immediate abandonment of the project (formally, all starting
times apart from s0 are set to infinity), which will be preferable when C is not large enough
compared to the costs of the activities: then it is better simply not to undertake the project
at all, with objective value 0.

2.2 Modular projects

Modularity means splitting the design and production of technologies into independent sub-
parts [3]. This has benefits towards inventory management for mass-produced items via
techniques such as commonality and postponement [7], but also with respect the duration
and chances of success of a product development project by itself: in this setting, a module is
a set of alternative development activities that pursue a similar target, representing repeated
trials or technological alternatives. Lenfle [24] provides a thorough literature review of the
management of projects via modules, and he points out that different alternatives can be
pursued either in parallel or sequentially, or following a mix of both strategies. Obviously,
management can also decide not to pursue certain alternatives, for instance because their
cost is too high compared to their expected benefits.
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Lenfle refers to the Manhattan Project as one prime example where such techniques were
applied (for instance, multiple alternative bomb assembly designs were tested simultane-
ously). Weitzman [38] brings up the evaluation and selection of alternative suppliers for
some commodity as one possible practical application. Nelson [29] cites a RAND working
paper on the development of a new microwave relay system at Bell Telephone Laboratories,
where the eventual success of the development was greatly facilitated by running multiple
approaches in parallel to solving some of the encountered development problems. Granot
and Zuckerman [17] refer to the development of nylon at DuPont, where numerous poly-
mers were tested one by one before the discovery of a suitable polyamide. Abernathy and
Rosenbloom [1] evaluate the merits of a parallel strategy at a critical point in a million-dollar
advanced power-supply development project. In the context of the development of an AIDS
vaccine, Ding and Eliashberg [13] note that ‘In many new product development (NPD) situ-
ations, the development process is characterized by uncertainty, and no single development
approach will necessarily lead to a successful product. To increase the likelihood of having
at least one successful product, multiple approaches may be simultaneously funded at the
various NPD stages.’

In this text, we will take the modular structure of the project as given, assuming that
an appropriate project network design and initial selection of development alternatives have
already been set out. Formally, the set of modules is M = {0, . . . ,m}; each module i ∈ M
contains the activities Ni ⊂ N , and the set of modules constitutes a partition of N : N =⋃
i∈M Ni and Ni ∩ Nj = ∅ if i 6= j. A is a (strict) partial order on M , i.e., an irreflexive

and transitive relation, which represents technological precedence constraints. (Dummy)
modules 0 and m represent the start and the end of the project, respectively; they are the
(unique) least and greatest element of the partially ordered set (M,A) and are assumed
to contain only one (dummy) activity, indexed by 0 and n, respectively. On the activities
within each module i, we also impose a partial order Bi, to allow for modeling precedence
requirements between these activities. In drug development, for example, when a certain
module is needed to show the effectiveness of a drug, two precedence-related activities could
represent the repeated measurement of the beneficial effects of the drug: the first test is
performed after one week; the effects after two weeks will only be measured if first the
effects after one week are inconclusive [9]. Alternatively, trials may be repeated in different
doses and with different test subjects [19]. Precedence constraints within modules may also
represent fallback options for project failure, as ‘contingency plans’: plans devised for an
outcome different from expected. Comparable modeling choices were made in Coolen et
al. [9] and in Huysmans et al. [19], but without discounting the cash flows, in which case
durations become irrelevant and scheduling all activities sequentially is a dominant choice.

For convenience, we associate a completion time hi(s; d,x) with each module i, in the
following way (here and later, we omit the arguments if no misinterpretation is possible):
hi = minj∈Ni|xj=1{sj + dj}, coinciding with the earliest completion of a successful activity
contained in the module; if the min-operator optimizes over the empty set then we define
hi := +∞, meaning that the module is never successfully completed. For a given success
vector x and durations d, we then say that a schedule s is feasible if the following conditions
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are fulfilled:

hi ≤ sj ∀(i, k) ∈ A,∀j ∈ Nk (2)

si + di ≤ sj ∀k ∈M,∀(i, j) ∈ Bk (3)

Equations (2) are inter-module precedence constraints, which imply that a necessary condi-
tion for the start of an activity j ∈ Nk is success for all the predecessor modules i of the
module k to which j belongs, where a module is said to be successful if at least one of its
constituent activities succeeds. Equations (3) are intra-module constraints: an activity j can
only be started when all predecessor activities i in the same module have been completed,
and its execution would obviously be useful only if all those predecessors failed. An activity’s
starting time equal to infinity corresponds to not executing the activity and therefore not
incurring any related expenses, or in case of activity n, not receiving the project payoff.
Consequently, the project payoff is achieved (sn 6=∞) only if every module is successful.

The classic PERT problem [2, 14, 23, 26] aims at characterizing the random variable
sn(D,1; ΠES), where policy ΠES starts all activities as early as possible, each module contains
only one activity, and 1 is an n-vector with value 1 in all components. Contrary to the
makespan, however, NPV is a non-regular measure of performance: starting activities as
early as possible is not necessarily optimal, since the ci are usually negative.

2.3 Illustration

Figure 1 illustrates the foregoing definitions and problem statement. This project consists
of seven activities, N = {0, 1, 2, 3, 4, 5, 6}, where 0 and n = 6 are dummies. There are five
modules, so m = 4 : N0 = {0} , N1 = {1, 2, 3} , N2 = {4}, N3 = {5} and N4 = {6}. In the
example, B1 = {(1, 3), (2, 3)}. Note that Figure 1 actually shows the transitive reduction
of A: the order relation A also contains elements such as (0, 2) and (1, 4), while the arcs
N0 → N2 and N1 → N4 are not included in the figure.

A policy Π12 for this project is the following: start the project at time 0 (s0 = 0) and
immediately initiate activities 1 and 2 (s1 = s2 = 0). If X1 = X2 = 0 then abandon the
project: set s3 = s4 = s5 = s6 = +∞. Otherwise, module N1 completes successfully. In
that case, start both activities 4 and 5 upon the successful completion of activity 1 or 2
(whichever is the earliest), and terminate the project if either 4 or 5 fails. Note that under
policy Π12, activity 3 is never started, and we effectively include activity selection as part of
the decisions to be made. Represented as a function, Π12 entails the following mapping:

(d1, d2, d3, d4, d5, x0, x1, x2, x3, x4, x5)
7→

(0, 0, 0,∞, h1, h1,max{h2;h3}),

with h1 = minj=1,2;xj=1{dj} and h1 =∞ if x1 = x2 = 0, h2 = h1 + d4 if x4 = 1 and h2 =∞
if x4 = 0, and h3 = h1 + d5 if x5 = 1 and h3 =∞ if x5 = 0.
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Figure 1: Example module network

3 Markov decision process

3.1 Policy class

In the literature, the input parameters of the PERT problem are often referred to as a PERT
network, and a PERT network with independent and exponentially distributed activity du-
rations is also called a Markovian PERT network. For Markovian PERT networks, Kulkarni
and Adlakha [23] describe an exact method for deriving the distribution and moments of the
earliest project completion time using continuous-time Markov chains (CTMCs), where it is
assumed that each activity is started as soon as its predecessors are completed (an early-start
schedule).

Buss and Rosenblatt [6], Sobel et al. [34] and Creemers et al. [10] investigate an eNPV
objective and use the CTMC described by Kulkarni and Adklakha as a starting point for their
algorithms. A similar problem is studied by Benati [5], who proposes a heuristic scheduling
rule. Next to stochastic durations, Buss and Rosenblatt [6] also consider activity delays.
These studies, however, all assume success in all activities and an exponential distribution
for all durations and they also imply the requirement that all activities be executed.

De Reyck and Leus [12] study project scheduling with known activity durations but with
uncertain activity outcomes. In that article, if an activity A ends no later than the start of
another activity B then knowledge of the outcome (success or failure) of A can sometimes
be used to avoid incurring the cost for B, since a failure in A would allow abandoning the
project, but payment for B cannot be avoided when B has already started before the out-
come of A is discovered. For a given selection of such ‘information flows’ between activities
(under the form of additional precedence constraints), a late-start schedule is then optimal
when the activity durations are known. Unfortunately, late-start scheduling is difficult to
implement in case of stochastic durations, and Sobel et al. [34] implicitly restrict their atten-
tion to scheduling policies that start activities only at the end of other activities. Buss and
Rosenblatt [6] partially relax this restriction by starting an activity only after a fixed time
interval (delay), but they do not decide which sets of activities to start at what time (all
eligible activities are started as soon as possible after their delay). Creemers et al. [10] study
the same problem as Sobel et al. [34] and achieve significant computational performance
improvements.
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In this article, we also propose to restrict the attention to policies that start activities at
the completion time of other activities. This can be seen to be a dominant set of policies for
those cases in which the project payoff is sufficiently large relative to the costs associated
with the intermediate activities, because the benefit of delaying the payment of an activity
would then be more than offset by the disadvantage of the higher possibility of delay in
obtaining the payoff; this reasoning holds for any discount rate r > 0. The generalization in
which activity starting times are delayed by a fixed offset beyond their earliest starting time
poses significant computational challenges (cf. [6]). The models and algorithms in this article
can be extended so that activities can also be started when other activities are ‘underway,’
and in Section 6, we describe our findings for an experiment where we consider the possible
start of new activities after each phase in the PH distribution of each ongoing activity (a
setting that gives rise to a larger policy class, hence a larger search space). The experiment
indicates that the average improvement in the objective function is minor (up to 0.3% of the
payoff at most, depending on the settings). We recognize that the practical relevance of this
larger policy class can obviously be questioned, and the experiment should merely be seen as
an approximation of the setting where activities can be started whenever the decision maker
chooses. We conclude that only starting activities at the completion time of other activities
is not a very restrictive decision, under the settings tested.

Below, we extend the work of Creemers et al. [10] to accommodate PH-distributed activity
durations, possible activity failures and a modular project network, allowing also for activity
selection. We first study the special case of exponential activity durations (Section 3.2),
followed by an illustration (Section 3.3) and by a treatment of more general distributions
(Section 3.4).

3.2 The exponential case

For the moment, we assume each duration Di to be exponentially distributed with rate
parameter λi = 1/E[Di] (i = 1, . . . , n− 1); we consider more general distributions in Section
3.4. At any time instant t, an activity’s status is either idle (not yet started), active (being
executed), or past (successfully finished, failed, or considered redundant because its module
is completed). Let I(t), Y (t) and P (t) represent the activities in N that are idle, active and
past, respectively; these three sets are mutually exclusive and I(t) ∪ Y (t) ∪ P (t) = N . The
state of the system is defined by the status of the individual activities and is represented
by a triplet (I, Y, P ). State transitions take place each time an activity becomes past and
are determined by the policy at hand. The project’s starting conditions are Y (0) = {0} and
I(0) = N \ {0}, while the condition for successful completion of the project is P (t∗) = N ,
where t∗ represents the project completion time.

The problem of finding an optimal scheduling policy corresponds to optimizing a dis-
counted criterion in a continuous-time Markov decision chain (CTMDC) on the state space
Q, with Q containing all the states of the system that can be visited by the transitions
(which are called feasible states); the decision set is described below. We apply a backward
stochastic dynamic-programming (SDP) recursion to determine optimal decisions based on
the CTMC described in Kulkarni and Adlakha [23]. The key instrument of the SDP recur-
sion is the value function F (·), which determines the expected NPV of each feasible state at
the time of entry of the state, conditional on the hypothesis that optimal decisions are made
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in all subsequent states and assuming that all ‘past’ modules (with all activities past) were
successful. In the definition of the value function F (I, Y ), we supply sets I and Y of idle
and active activities as parameters (which uniquely determines the past activities). When
an activity finishes, three different state transitions can occur: (1) activity j ∈ Ni completes
successfully; (2) activity j ∈ Ni fails and another activity k ∈ Ni is still idle or active; (3)
activity j ∈ Ni fails and all other activities k ∈ Ni have already failed (or it is the only
activity in the module).

We define the order B∗ on set N to relate activities that do not necessarily belong to the
same module, as follows:

(i, j) ∈ B∗ ⇔ (∃Bm : (i, j) ∈ Bm) ∨ (∃(l,m) ∈ A : i ∈ Nl ∧ j ∈ Nm).

We call an activity j eligible at time t if j ∈ I(t) and ∀(k, j) ∈ B∗ : k ∈ P (t). Let
E(I, Y ) ⊂ N be the set of eligible activities for given sets I and Y of idle and active
activities. Upon entry of a state (I, Y, P ) ∈ Q, a decision needs to be made whether or not
to start eligible activities in E(I, Y ) and if so, which. If no activities are started, a transition
towards another state occurs at the first completion of an element of Y . Not starting any
activities while there are no active activities left, corresponds to abandoning the project.
Let λ̂ =

∑
k∈Y λk. The probability that activity j ∈ Y completes first among the active

activities equals λj/λ̂ (competing expontials; see our working paper [11] for more details).

The expected time to the first completion is λ̂−1 time units (the length of this timespan is
also exponentially distributed) and the appropriate discount factor to be applied for this

timespan is λ̂/
(
r + λ̂

)
(see working paper). In state (I, Y, P ) ∈ Q, the expected NPV to be

obtained from the next state on condition that no new activities are started equals

F0(I, Y ) =
λ̂

r + λ̂

∑
j∈Y

pjλj

λ̂
F (I \Ni, Y \Ni)+

λ̂

r + λ̂

∑
j∈Y :Ni\{j}6⊂P

(1− pj)λj
λ̂

F (I, Y \ {j}),
(4)

with j ∈ Ni in the summations. Our side conditions are F (I,∅) = 0 for all I.
The second alternative is to start a non-empty set of eligible activities S ⊆ E(I, Y ) when

a state (I, Y, P ) ∈ Q is entered. This leads to incurring a cost
∑

j∈S cj and an immedi-
ate transition to another state, with no discounting required. The corresponding eNPV,
conditional on set S 6= ∅ being started, is

FS(I, Y ) = F (I \ S, Y ∪ S) +
∑
j∈S

cj. (5)

The total number of decisions S that can be made is 2|E(I,Y )|. The decision corresponding
to the highest value in (4) and (5) determines F (·):

F (I, Y ) = max

{
F0(I, Y ) ; max

S 6=∅
{FS(I, Y )}

}
, (6)
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for feasible state (I, Y,N \ (I ∪ Y )).
The computation of the backward SDP recursion (6) starts in state (∅, {n}, N \ {n}).

Subsequently, the value function is evaluated stepwise for all other states. The optimal
objective value maxΠ∈P E[f(Π)] is obtained as F (N \ {0}, {0}). We should note that the
policies from which one with the best objective function is chosen, do not consider the option
of starting activities at the end of activities that are redundant (past) because another
activity already made their module succeed.

3.3 Illustration

In this section, we illustrate the functioning of the SDP algorithm by analyzing the example
project with seven activities (n = 6) introduced in Section 2.3, for which the module order A
is described by Figure 1. Further input data are provided in Table 1; the project’s payoff
value C is 300 and the discount rate is 10 percent per time unit (r = 0.1).

Table 1: Project data for the example project

task i cash flow ci mean duration E[Di] pi
0 0 0 100%
1 −20 10 40%
2 −35 2 35%
3 −70 8 75%
4 −10 2 100%
5 −10 2 60%
6 0 100%

For exponentially distributed activity durations, the SDP recursion described in Sec-
tion 3.2 can be applied to find an optimal policy. At the onset of the project (in state
(N \ {0},∅, {0})) we can decide to start either the first activity, the second activity, or
both, from module 1. The SDP recursion evaluates the expected outcome of each of these
decisions and selects one that yields the highest expected NPV (assuming that optimal de-
cisions are made at all future decision times). In our example, it is optimal to start only the
first activity (corresponding to an objective function of 3.27) and we subsequently end up in
state ({2, 3, 4, 5}, {1}, {0}), in which two possibilities arise. If activity 1 succeeds, module 1
succeeds as well and a transition occurs to state ({4, 5},∅, {0, 1, 2, 3}); otherwise (if activity
1 fails), we end up in state ({2, 3, 4, 5},∅, {0, 1}) and have to make a decision: either we
start activity 2, corresponding to a transition to state ({3, 4, 5}, {2}, {0, 1}) and an eNPV at
that time for the remainder of the project of −1.06, or we abandon the project altogether
obtaining a current value of 0. The optimal decision in this case is obviously not to continue
the project.

After a successful completion of module 1, two new activities become eligible. The
optimal decision is to start both activities 4 and 5, leading to state (∅, {4, 5}, {0, 1, 2, 3}).
Two possibilities then arise: either activity 4 or activity 5 finishes first. Irrespective of which
activity completes first, if either activity 4 or 5 fails then the entire project fails. If activity
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4 (resp. 5) finishes first and succeeds, activity 5 (resp. 4) is still in progress and needs to
finish successfully for the project payoff to be earned. We refer to this optimal policy for
exponential durations by the name Π1.

The relevant part of the corresponding decision tree is represented in Figure 2, in which
the project evolves from left to right. A decision node, represented by a square, indicates that
a decision needs to be made at that point in the process; a chance node, denoted by a circle,
indicates that a random event takes place. Underneath each decision node, we indicate the
eNPV conditional on an optimal decision being made in the node, which applies only to the
part of the project that remains to be performed. For each decision node, a double dash //
is added to each branch that does not correspond to an optimal choice in the SDP recursion.

-1.06

-5.55

3.27

{1}

{1,2}

{2}

{2}

{4}

{4,5}

0.00

-1.06

success (1)

116.36

success (4)

success (5)

300.0

0.00

0.00

106.67

{5}
110.00

success (5)

success (4)

fail (
4)

fail (
5)

fail (1)

Decision node

Chance node

Dominated decision

{ j } Decision to start activity j

Project

abandonment

D
4>D

5

D4<D5

fail (5)

fail (4)

Figure 2: Optimal paths in the decision tree for the example project

3.4 Generalization towards PH distributions

We now assume that the durations Dj of the activities j ∈ N \ {0, n} are mutually indepen-
dent PH-distributed stochastic variables. PH distributions were first introduced by Neuts
[30] as a means to approximate general distributions using a combination of exponentials.
We will adopt so-called acyclic PH distributions for the activity durations in order to assess
the impact of activity duration variability on the eNPV of a project. In this section, we infor-
mally describe PH distributions and show how to determine the optimal eNPV of a project
when activity durations are PH distributed. More details, including a moment-matching
approach, are described in [11].

Due to the properties of the acyclic PH distribution, each activity j 6= 0, n can be seen
as a sequence of zj phases where:

• each phase θju has an exponential duration with rate λju,

• each phase θju has a probability τju to be the initial phase when starting activity j,

• each phase θju is visited with a given probability πjvu when departing from another
phase θjv.

Acyclicity of the distribution implies that a state is never visited more than once. Since the
execution of a task is non-preemptive, the execution of the sequence of phases as well as the
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execution of a phase itself should be uninterrupted. Therefore, upon completion of a phase
θju:

• activity j completes with probability πju0 (absorption is reached in the underlying
Markov chain),

• phase v is started with probability πjuv.

The exponential distribution for activity j ∈ N \{0, n} is then a PH distribution with zj = 1,
τj1 = 1 and λj1 ≡ λj.

Maintaining the definition of Y (t) given in Section 3.2, define Y ◦(t) as the set of phases
of the activities in Y (t) that are being executed at time instant t. Clearly, Y can be obtained
from Y ◦. The state of the system is again fully determined by the status of the individual
activities and is now represented by a triplet (I, Y ◦, P ). The SDP recursion described in
the previous subsection for computing function F is easily extended to accommodate PH
distributions; the most important modification is in Equation (4), which becomes

λ̂◦

r + λ̂◦

∑
θju∈Y ◦

πju0
pjλju

λ̂◦
F (I \Ni, Y

◦ \N◦i )+

λ̂◦

r + λ̂◦

∑
θju∈Y ◦:Ni\{j}6⊂P

πju0
(1− pj)λju

λ̂◦
F (I, Y ◦ \ {θju})+

λ̂◦

r + λ̂◦

∑
θju∈Y ◦

λju

λ̂◦

zj∑
v=1
v 6=u

πjuvF (I, Y ◦ ∪ {θjv} \ {θju}),

(7)

with j ∈ Ni, λ̂
◦ =

∑
θkv∈Y ◦ λkv and N◦i = {θku : k ∈ Ni}. We use the result that the

probability that phase θju ∈ Y ◦ completes first among the active phases equals λju/λ̂
◦ and

that the expected time to the first completion is λ̂◦
−1

time units.

4 Computational performance

In this section, we will briefly evaluate the computational performance of the SDP algorithm.
Our experiments are performed on an AMD Phenom II with 3.21 GHz CPU speed and 2
GB of RAM. To investigate the impact of variability, we use PH distributions to model the
activity durations, which will allow us to increase or decrease the variability and examine its
impact on the project’s eNPV by changing the Squared Coefficient of Variation (SCV ) of
the activity durations (for simplicity, we assume all activity durations to have equal SCV ).
Setting SCV = 1 corresponds to exponentially distributed activity durations, SCV = 0
coincides with deterministic durations.

We borrow the datasets that were generated by Coolen et al. [9]: these consist of 10
instances for each of various values of the number of activities n and for OS = 0.4, 0.6
and 0.8, with ‘order strength’ OS the number of comparable activity pairs according to
the induced order B∗, divided by the maximum possible number of such pairs (this value
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is only approximate). Average activity durations are not used by Coolen et al. [9] and
are additionally generated for each activity, for each instance separately; each such average
duration is a uniform integer random variate between 1 and 15. In the generated instances,
all activities apart from the final one have negative cash flows and the final activity has a
positive payoff (which is also significantly larger in absolute value); we refer to the appendix
of [9] for more details.

For exponential durations, an upper bound on |Q| is 3n. Enumerating all these 3n states
is not recommended, as the majority of the states typically do not satisfy the precedence
constraints. For PH durations, the bound becomes

∏
j∈N 3zj . In order to minimize storage

and computational requirements, we adopt the techniques proposed by Creemers et al. [10]:
as the algorithm progresses, the information on the earlier generated states will no longer
be required for further computation and therefore the memory occupied can be freed. This
procedure is based on a partition of Q, allowing for the necessary subsets to be generated
and deleted when appropriate.

In our implementation, storage requirement for 600, 000 states amounts to a maximum
of 4.58 MB; we only generate feasible states. On our computer, a maximum state space of
268, 435, 456 states can be stored entirely in memory. Our results with exponential durations
are presented in Tables 2–4, gathered per combination of values for OS and n (all runtimes
are reported in seconds). The discount rate r = 10%. The tables show that networks of up to
40 activities are analyzed with relative ease. When n = 51, however, the optimal solution of
most networks with low order strength (OS = 0.4) is beyond reach when the system memory
is restricted to 2 GB. When OS = 0.6, the performance is limited to networks with n = 71
or less. We observe that the density of the induced order B∗ is a major determinant for
the computational effort: order strengths and computation times clearly display an inverse
relation. Additionally, the real bottleneck for the algorithm turns out to be memory space
rather than CPU time: projects with n = 81 and OS = 0.4 require less than five hours
runtime on average (the highest runtime over all the tested settings), which is still practical
for industrial-type projects, but larger instances with OS = 0.4 cannot be analyzed anymore
due to memory limits.

As a side note, we observe that given the number of states generated, approximation
techniques might be useful, either by restricting to ‘classic’ scheduling heuristics such as
list policies, or by resorting to more mainstream approximation techniques for Markovian
decision processes (see for instance [31, 32]). This option is not further pursued in this
article.
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Table 2: Number of successfully analyzed networks out of 10

n OS = 0.8 OS = 0.6 OS = 0.4
11 10 10 10
21 10 10 10
31 10 10 10
41 10 10 7
51 10 10 5
61 10 6 3
71 9 5 3
81 10 4 1
91 9 4 0
101 10 1 0
111 9 1 0
121 8 0 0

Table 3: average size of the state space (|Q|) for analyzed networks

n OS = 0.8 OS = 0.6 OS = 0.4
11 74 248 628
21 396 4, 303 29, 793
31 2, 174 192, 984 911, 558
41 15, 871 1, 619, 351 25, 051, 988
51 98, 559 1, 940, 598 90, 057, 422
61 177, 916 29, 540, 126 278, 145, 443
71 2, 260, 271 85, 611, 285 82, 971, 948
81 2, 070, 967 34, 261, 271 176, 976, 352
91 23, 128, 416 145, 911, 293
101 24, 804, 064 165, 306, 852
111 67, 477, 195 56, 193, 712
121 69, 245, 416
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Table 4: average CPU time (in seconds) required to find an optimal policy

n OS = 0.8 OS = 0.6 OS = 0.4
11 0 0 0
21 0 0 0.03
31 0 0.3 1.77
41 0.02 3.54 70.93
51 0.15 5.12 298.41
61 0.32 128.31 2, 397.93
71 17.53 469.34 27, 065.53
81 5.7 1817.54 15, 605.91
91 107.61 1, 322.77
101 105.66 894.61
111 283.57 10, 540.86
121 528.81

5 Impact of activity duration variability

In this section, we examine the impact of different degrees of variability of the activity
durations on a project’s value. We do this for the example project instance in Section 5.1,
and we generalize by testing with a larger-scale experimental setup in Section 5.2.
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5.1 Impact of duration variability in the example instance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 Time10

11 12 13 Time10

1-20

0
Project

abandonment

300

5-10

4-10
100%

60%

40%

60%

(a) Policy Π1

0 1 2 3 4 5 Time2

3 4 5 Time2

2-35

0
Project

abandonment

300

5-10

4-10
100%

60%

35%

65%

(b) Policy Π2

Figure 3: Policies with deterministic durations

The policy Π1 described in Section 3.3 is optimal for exponential durations; its objective
value is 3.27 for the example. The quality of the policy changes when the variability level
is different, however. Figure 3(a) illustrates the functioning of policy Π1 with deterministic
durations: the policy first executes only activity 1, and then starts both activity 4 and 5 if
1 succeeds, otherwise the project is abandoned. The objective function value for Π1 with
deterministic durations is

E[f(Π1)] = c1 + p1e
−rE[D1]

(
c4 + c5 + p4p5Ce

−rE[D5]
)

= −1.26.

An optimal policy Π2 for this setting is described by Figure 3(b), with eNPV

E[f(Π2)] = c2 + p2e
−rE[D2]

(
c4 + c5 + p4p5Ce

−rE[D5]
)

= 1.50.

Here, activity 2 is started at the project’s initiation, and activity 1 is never selected (i.e.,
upon failure of activity 2 the project is abandoned). With exponential durations, on the
other hand, Π2 has an objective value of −1.06, significantly lower than the optimal value
of 3.27 achieved by Π1. Interestingly, the inferior policy in the case of exponential durations
becomes optimal when activity durations are deterministic. Also, the effect of variability on
the eNPV associated with a policy is not monotonic; the eNPV of policy 1 increases, whereas
the eNPV of policy 2 decreases. Of particular interest is the fact that the eNPV can actually
increase when variability is introduced, which is quite counterintuitive. Note also that for
each of the two variability settings, the sign of the objective of two policies is different (one
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policy achieves a negative NPV while the other one has positive NPV); we summarize these
values in Figure 4. This is a strong case for incorporating all variability information into the
computations and not only ‘plugging in’ the expectations into a deterministic model, since
a good project might be cut from the portfolio based only on expected values, whereas it
would be able to add value with a carefully selected scheduling strategy.

deterministic exponential
Π1 −1.26 3.27
Π2 1.50 −1.06

−−−−−−−−−−→
variability increases

Figure 4: eNPV for policies Π1 and Π2

Define policy Π0 as the immediate abandonment of the project, with zero objective value.
Figure 5 depicts the eNPV of the optimal policy for each level of duration variability; for
any value of SCV , either Π0, Π1 or Π2 is optimal. In particular, for a specific range of SCV
values, policy Π0 (not executing the project) is preferable, while different optimal policies
appear for other ranges. We observe that eNPV decreases with SCV for policy Π2. Policy
Π1, on the other hand, exhibits a U-shaped relationship between SCV and project eNPV. In
this particular instance, the eNPV of the project is largest when activity durations are highly
uncertain (exponentially distributed). This contrasts with the intuition that an increase in
uncertainty necessarily entails a decrease of system performance. These findings are further
explored in Section 5.2 by means of experiments on a larger set of instances.
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Figure 5: The effect of activity duration variability on the optimal eNPV for the example
project

Even with exponential durations, it is not a trivial matter to analytically evaluate the
entire distribution of a project’s NPV; in fact, we are not aware of any studies that have
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attempted to achieve this directly. More work is available on the analytical evaluation of
project makespan in the context of the PERT problem. It turns out that, with discrete
independent durations, computing the expected makespan, and computing a single point of
the distribution function, are both #P-complete (any #P-complete problem is polynomially
equivalent to counting the number of Hamiltonian cycles of a graph and thus in particular
NP-complete) [18, 28]. Since project NPV is a function of project makespan, this is at least
clear indication that evaluating NPV analytically is probably highly intractable for general
duration distributions, and we therefore resort to simulation as a means to approximate the
NPV distribution.

For policies Π1 and Π2 for the example instance, Figure 6 shows the NPV distribution
(cdf) for a number of different values for SCV ; these plots were obtained via simulation.
From module 1, policy Π1 only executes activity 1 while Π2 only executes activity 2, which is
longer but less expensive, and has a slightly higher success probability. We observe that Π2

has both a higher upside potential (higher probability of achieving high NPV) as well as a
higher downside risk (larger chance of low NPV realizations); the net effect of this comparison
is favorable towards policy Π1 when SCV goes beyond the value of 0.2 (approximately).
Apparently, the higher success probability and lower cost of activity 1 become more attractive
(compared to activity 2) when the duration variability is higher, such that also low duration
realizations forD1 can be achieved, while higher-than-average realizations inD1 will probably
not affect the eNPV with the same magnitude because of the concave and non-increasing
dependence of the discount factor with time. In other words, this example indicates that the
interplay between activity costs, success probabilities, average durations and the discount
factor induces the different dependence of Π1 and Π2 on SCV .
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Figure 6: cdf of NPV associated with policies Π1 and Π2 for various activity duration
distributions and various levels of variability

5.2 Impact of variability: experiments

Ward and Chapman [37] argue that all current project risk-management processes induce a
restricted focus on the management of project uncertainty. In part, this is because the term
‘risk’ encourages a ‘threat’ perspective: we refer the reader to the examples of risk events
in the model for variability reduction by Ben-David and Raz [4] and Gerchack [15]. Ward
and Chapman state that a focus on ‘uncertainty’ rather than risk could enhance project risk
management, providing an important difference in perspective, including, but not limited to,
an enhanced focus on opportunity management, an ‘opportunity’ being a ‘potential welcome
effect on project performance.’ Ward and Chapman suggest that management strive for
a shift from a threat focus towards greater concern with understanding and managing all
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sources of uncertainty, with both up-side and down-side consequences, and explore and
understand the origins of uncertainty before seeking to manage it. They suggest using the
term ‘uncertainty management,’ encompassing both ‘risk management’ and ‘opportunity
management.’ See also Loch et al. [25] for examples of how downside risks can sometimes
be turned into upside opportunity (e.g., p. 5 and p. 20).

In order to examine the impact of duration variability on the value of a project in a
more structured fashion, we have generated new instances in line with [9], with n ∈ {11, 21}
and OS ∈ {0.4, 0.6, 0.8} but now we generate 100 instances per combination of parameter
settings, and there is no activity failure nor modular completion of the project (each activity
constitutes a separate module). The payoff value C is (uniform) randomly chosen from
interval [0.9C0; 2C0], where C0 is the payoff value that associates objective value 0 (break-
even) with the early-start policy ΠES for SCV = 1. We consider a wide range of SCV values;
for more details on the generation of the duration distributions, see [11]. The results are
graphically summarized in Figure 7 for r = 10% and in Figure 8 for r = 1%. We investigate
the effect of different variability levels (different values of SCV ) on the value of the project.
We observe that variability reduction is systematically not beneficial for the project’s value
as measured by eNPV in the cases where the precedence network is rather dense and the
discount rate is high; this corresponds with Figures 7(a), 7(b) and 7(c).
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(a) OS = 0.8 and n = 11
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(b) OS = 0.8 and n = 21
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(c) OS = 0.6 and n = 11
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(d) OS = 0.6 and n = 21
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(e) OS = 0.4 and n = 11
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(f) OS = 0.4 and n = 21

Figure 7: Boxplots of eNPV for different values of SCV , n and OS with r = 0.1
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(b) OS = 0.8 and n = 21
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(c) OS = 0.6 and n = 11
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(d) OS = 0.6 and n = 21
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(e) OS = 0.4 and n = 11
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(f) OS = 0.4 and n = 21

Figure 8: Boxplots of eNPV for different values of SCV , n and OS with r = 0.01

These results may be explained by: (1) the likelihood of serial execution, and (2) the
concaveness of the discount function e−rt. With high OS , the precedence network is close
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to serial, and an increase in duration variability results in an increase in the probability
of completing the activity after a short amount of time. Due to the concave shape of the
discount function, the gain in the objective associated with low duration realizations can
offset the loss associated with higher duration realizations, and this is more pronounced for
higher r. Low OS , by contrast, will imply that activities are more often executed in parallel,
and then the start of new activities is more frequently defined by the maximum of multiple
activity durations, the so-called merge (bias) effect [22]. This merge effect is less likely
to give rise to short completion times even in the event that some activity durations are
low, and thus reduces the benefits associated with the concave discount function. Optimal
scheduling policies will indeed tend to execute some of the activities in parallel rather than
serially when possible (low OS ), because this reduces the project makespan and thus leads
to earlier project payoff.

Thus, investing in variability reduction becomes more interesting if: (1) r is low, (2) OS
is low, and (3) variability can almost be eliminated. With a higher number n of activities,
ceteris paribus, the project duration will also typically also be higher and there will be more
chances for merge bias, so we would expect variability reduction to be more beneficial; this is
also confirmed by the experimental results. The figures also show that very high variability
often exhibits increased eNPV, but this phenomenon only occurs for unrealistically high
SCV values (SCV = 10) in some of the settings. Similar patterns arise when activity
failures are included and when there may be more than one activity in the same module
(which is not the case in the datasets to which the plots pertain). The effects are also not
dependent on the PH-type character of the distributions: we have found comparable behavior
in simulations with lognormal and gamma distributions. As a final remark, we underline
that all the observations made in this section pertain exclusively to expected NPV; obviously,
lower duration variability is likely to induce lower variability in the NPV realizations as well,
which may or may not be of significant importance to management, depending for instance
on whether an entire portfolio of projects or rather only one individual project is being
managed.

6 Policy class: experiments

Following up on the discussion in Section 3.1, we further examine the possible choices for the
policy class. Table 5 contains the results for an experiment with which we evaluate whether
the consideration of policies that start activities only at the end of other activities, is very
restrictive. The experiments were run on the datasets with n = 11 and 21 that were used
in Section 5.2. We consider SCV ∈ {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1}. For n = 21
and OS = 0.4, we do not report results for networks with SCV ∈ {0.125, 0.25}, and we also
do not cover the combination n = 21, OS = 0.6 and SCV = 0.125. The reason for excluding
some combinations is that lower SCV requires more phases to model the activity durations:
SCV = 0.25, for instance, requires four phases for each activity, which results in a network
of 4n phases. With r = 0.1 and for each value of SCV and OS , Table 5 reports the decrease
in the objective value by optimizing over the restricted policy class as compared to the more
general class that also considers starting new activities after the completion of each phase of
each ongoing activity; the decrease is expressed as a proportion of the payoff C and averaged
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over the 100 instances.
We conclude that the benefits of allowing activity start also at other times than only at

the completion of other activities are minor, and nowhere higher than around 0.3% of the
payoff. The benefits are higher especially when variability is low; this is logical, since there
are more phases and hence more decision times with lower SCV . The observation is also
in line with the fact that for deterministic durations, late-start scheduling is optimal (see
Section 3.1). When SCV = 1, the two classes coincide. At the same time, there were no
significant differences in the computational effort for finding an optimal member in the larger
policy class. In other words, from a computational viewpoint, there is no real downside to
allowing decisions to be made during the execution of activities, but the benefits are also
quite limited. Other values of r have also been tested, with similar findings.

Table 5: Comparison of policy classes: average difference in eNPV as a proportion of the
payoff

SCV
0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

OS = 0.8 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000
n = 11 OS = 0.6 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000

OS = 0.4 0.003 0.002 0.002 0.001 0.002 0.001 0.001 0.000
OS = 0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

n = 21 OS = 0.6 — 0.000 0.000 0.000 0.000 0.000 0.000 0.000
OS = 0.4 — — 0.000 0.000 0.000 0.000 0.000 0.000

7 Summary and conclusions

Project planning with traditional tools typically ignores technological and duration uncer-
tainty. In this article, we have explained how to model scheduling decisions in a more
practical environment with considerable uncertainty, and we illustrate how decision making
based only on expected values can lead to inappropriate decisions. We have developed a
generic model for the optimal scheduling of R&D-project activities with stochastic dura-
tions, non-zero failure probabilities and multiple trials subject to precedence constraints.
We assess the effect of different degrees of activity duration variability on the expected NPV
of a project. We also refute the intuition that an increase in uncertainty necessarily entails
a decrease of system performance, which seconds the proposal to focus also on ‘opportunity
management’ rather than only on ‘risk management’: we illustrate that higher operational
variability does not always lead to lower project values, meaning that (sometimes costly)
variance reduction strategies are not always advisable.
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