
doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

Maximizing the expected net present value of a project

with phase-type distributed activity durations: an

efficient globally optimal solution procedure

Stefan Creemers

Abstract - We study projects with activities that have stochastic durations that
are modeled using phase-type distributions. Intermediate cash flows are incurred
during the execution of the project. Upon completion of all project activities
a payoff is obtained. Because activity durations are stochastic, activity starting
times cannot be defined at the start of the project. Instead, we have to rely on a
policy to schedule activities during the execution of the project. The optimal pol-
icy schedules activities such that the expected net present value of the project
is maximized. We determine the optimal policy using a new continuous-time
Markov chain and a backward stochastic dynamic program. Although the new
continuous-time Markov chain allows to drastically reduce memory requirements
(when compared to existing methods), it also allows activities to be preempted;
an assumption that is not always desirable. We prove, however, that it is glob-
ally optimal not to preempt activities if cash flows are incurred at the start of
an activity. Moreover, this proof holds regardless of the duration distribution of
the activities. A computational experiment shows that we significantly outper-
form current state-of-the-art procedures. On average, we improve computational
efficiency by a factor of 600, and reduce memory requirements by a factor of 321.

Keywords - project scheduling, project management, NPV maximization,
SNPV, stochastic activity durations

1 Introduction

Most of the literature on project scheduling has focussed on minimizing the makespan of a
project, that is, the time until completion of all project activities. The financial aspects of
a project are often overlooked. In most capital-intensive industries, however, the value of
a project is much more important than its completion time. Traditionally, the value of a
project is expressed using its net present value (NPV). The NPV of a project is obtained by
discounting all cash flows incurred during the project lifetime. The most common goal of a
scheduling procedure then is to schedule the project activities such that the expected NPV
(or eNPV) of a project is maximized.

In a recent survey, Wiesemann and Kuhn (2015) not only highlight the importance of
NPV over project completion time, but also stress the importance of stochastic project
scheduling. In stochastic project scheduling, the cash flows and/or the activity durations are
random variables, and hence, the project NPV itself is also a random variable. In this article,
we study the stochastic NPV maximization problem (SNPV), and assume that activity

1

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

durations are phase-type (PH) distributed. PH distributions are mixtures of exponential
distributions that can be used to approximate any positive-valued distribution. As such,
they not only allow to model activity durations in a general way, they also allow us to
still exploit the properties of the exponential distribution. In accordance with most of the
literature on the SNPV, we assume that cash flows are deterministic, and that there are no
resources. For exponentially-distributed activity durations, Sobel et al. (2009) were the first
to propose a generic formulation of the SNPV as a continuous-time Markov decision process.
Creemers et al. (2010) extend the work of Sobel et al. (2009), and present a procedure that
is the current state-of-the-art for solving the SNPV. Both Sobel et al. (2009) and Creemers
et al. (2010) use the well-known continuous-time Markov chain (CTMC) of Kulkarni and
Adlakha (1986). In this article, we take a different approach and use the new CTMC of
Creemers (2016). Although the CTMC of Creemers (2016) is far more memory-efficient
than the CTMC of Kulkarni and Adlakha (1986), it also allows activities to be preempted;
an assumption that is not always desirable. In what follows, however, we prove that it is
globally optimal not to preempt activities when solving the SNPV.

Our main contributions are: (1) we extend the approach of Creemers (2016), and demon-
strate that it can be used to find globally optimal solutions for the SNPV, and (2) we signif-
icantly improve computational performance when compared to the current-state-of-the-art
procedures for solving the SNPV.

The remainder of this article is structured as follows. Section 2 reviews the literature.
Section 3 presents some basic definitions and provides a brief problem description. Section 4
defines the CTMC, and explains how a backward stochastic dynamic-programming (SDP)
recursion is used to obtain the maximum eNPV of a project. Section 5 introduces the PH
distributions that are used to model the activity durations. Section 6 discusses when to
preempt activities, and why it is globally optimal to not preempt activities when solving the
SNPV. Section 7 reports on the results of an elaborate computational experiment. Section 8
concludes.

2 Literature review

The idea of maximizing the NPV of a project was first introduced by Russell (1970) , who
describes a nonlinear model where all parameters are deterministic. A few year later, Grinold
(1972) showed that the nonlinear model of Russell can be transformed into an equivalent
linear model that can be solved using a network simplex algorithm. In 2000, Neumann and
Zimmermann extend Grinold’s model to solve problems with generalized precedence relation-
ships. The deterministic NPV maximization problem has also been studied by Elmaghraby
and Herroelen (1990) and Schwindt and Zimmermann (2001), who develop efficient solution
procedures. Heuristic procedures are available from Baroum and Patterson (1996) and Pin-
der and Marucheck (1996). Several extensions have been considered that allow for resource
constraints, time-dependent cash flows, and multiple execution modes. For a review of the
literature on the deterministic NPV maximization problem and its extensions, we refer the
reader to Herroelen et al. (1997), Demeulemeester and Herroelen (2002), Hartmann and
Briskorn (2010), Gu et al. (2015), and Wiesemann and Kuhn (2015).

If activity durations are exponentially distributed, Buss and Rosenblatt (1997) were the

2

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

first to maximize the eNPV of a project while observing the impact of activity delay. The
SNPV with exponentially-distributed activity durations itself, however, was only formally
defined in 2009 by Sobel et al. (2009). Their work was continued by Creemers et al. (2010),
who propose a memory-efficient procedure to solve the SNPV. The procedure of Creemers et
al. (2010) has, among others, been used by Gutin et al. (2015) to study interdiction games,
and has also been adapted for solving the stochastic resource-constrained project scheduling
problem (SRCPSP) by Creemers (2015). Sobel et al. (2009) and Creemers (2015) both
discuss the possibility to use PH distributions to model activity durations. The impact of
PH distributions and activity duration variability are explored in Creemers et al. (2015b),
who maximize the eNPV of modular projects under the assumption that activities can fail.
Note that all aforementioned works use the CTMC of Kulkarni and Adlakha (1986) to model
project networks.

Instead of using exponential distributions, Tavares et al. (1998) adopt lognormal activity
durations and normally distributed cash flows to solve generic project scheduling problems.
Discrete duration and cash flow distributions are used by Benati (2006), who presents a two-
stage heuristic to solve the SNPV. Wiesemann et al. (2010) also use discrete distributions,
and develop an exact branch-and-bound procedure. Resources and multiple execution modes
have been considered in Özdamar and Dündar (1997) and Chen and Zhang (2012). Ke and
Liu (2005) consider three stochastic models that allow to minimize: (1) the expected cost,
(2) the cost while imposing chance constraints, and (3) the probability to overrun the budget.

As an alternative to probability distributions, fuzzy numbers are often used to repre-
sent activity durations and/or cash flows. The fuzzy NPV maximization problem has been
introduced by Uçal and Kuchta (2011), who assume fuzzy cash flows and deterministic ac-
tivity durations. Shavandi et al. (2012), on the other hand, assume fuzzy activity durations
and deterministic cash flows. Ke and Liu (2007, 2010) extend their work of 2005 to also
accommodate fuzzy activity durations.

3 Definitions and problem description

A project can be seen as a graph G = (V,E), where V = {1, . . . , n} is a set of nodes that
represent project activities, and E = {(i, j)|i, j ∈ V } is a set of arcs that represent precedence
relationships. The start and the completion of a project are represented by dummy activities
1 and n, respectively. Each non-dummy activity i : i ∈ V \ {1, n} has a random duration
p̃i with expectation µi and variance σ2

i . In addition, p̃ = {p̃2, p̃3, . . . , p̃n−1} denotes the
vector of random variables p̃i, and p = {p2, p3, . . . , pn−1} is the vector of random variates (or
realizations) of p̃, where pi is a random variate of p̃i.

Because activity durations are uncertain, activity starting times cannot be defined at
the start of the project. Instead, they are determined during project execution using a
policy. Most of the literature on stochastic project scheduling adopts simple list policies
that execute activities in the order of a list (see, e.g., Golenko-Ginzburg & Gonik, 1997; Tsai
& Gemmill, 1998; Ballest́ın & Leus, 2009; Ashtiani et al., 2011; Rostami et al., 2017). In
this article, on the other hand, we adopt elementary policies; a more general class of policies
that allows decisions to be made at the start of the project and at the end of activities. List
policies are a subset of the class of elementary policies, and, in turn, elementary policies are a

3

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

subset of the class of all policies (refer to Rostami et al., 2017 for a hierarchy of the different
policy classes). Even though elementary policies are a subset of the set of all policies, they
have been shown to be globally optimal when solving the SNPV if activity durations are
exponentially distributed (Sobel et al., 2009).

A policy can be seen as a set of decision rules that define actions at decision times.
Decision times are typically the start of the project and the completion times of activi-
ties. An action, on the other hand, corresponds to the abandonment of the project or the
start/interruption of a set of activities. In addition, decisions have to respect the non-
anticipativity constraint (i.e., a decision at time t can only use information that has become
available before/at time t). When executing a policy, activity starting times become known
gradually (i.e., a schedule is constructed as time progresses). As a result, a policy Π may
be interpreted as a function that maps realizations of activity durations p to vectors of fea-
sible starting times S(p,Π) = {S1(p,Π), S2(p,Π), . . . , Sn(p,Π)}, where S1(p,Π) = 0 and
Sn(p,Π) = max

i∈V \{1,n}
Si(p,Π) + pi. Refer to Igelmund and Radermacher (1983), Möhring

(2000), and Stork (2001) for more details.
Without loss of generality, we assume that a cash flow ci is incurred at the start of

activity i, where c1 represents the initial outlay, and cn represents the projet payoff. We use
continuous discounting to determine the eNPV of a cash flow ci:

vi = E
(
cie
−rSi(p,Π)

)
, (1)

where r is the discount rate, and E (·) is the expectation operator with respect to p. The
eNPV of the project is:

v =
∑
i∈V

vi. (2)

The optimal policy Π? selects activities such that v is maximized.

4 CTMC and SDP recursion

In this section, we assume that activity durations are exponentially distributed (later on,
in Section 5, we introduce PH-distributed activity durations). If activity durations are
exponentially distributed, a project can be seen as a Markovian PERT network. Markovian
PERT networks were first studied by Kulkarni and Adlakha (1986), who use a CTMC to
obtain the exact distribution of the earliest completion time of a project. In the CTMC of
Kulkarni and Adlakha (1986), the state of the system is defined by three sets: the set of
idle activities I, the set of ongoing activities O, and the set of finished activities F . Because
activities are either idle, ongoing, or finished, the size of the state space of the CTMC has
upper bound 3n. Even for small n, storing all states in memory is impossible. Most states,
however, do not satisfy precedence constraints. In order to reduce memory requirements, a
strict partitioning of the state space is required. Creemers et al. (2010) introduce the use
of uniformly directed cuts (UDCs) to structure the state space. Afterwards, their approach
was adopted by, among others, Wei et al. (2013), who solve a sequential testing problem,
and Coolen et al. (2014), who solve a single-machine scheduling problem with modular

4

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

projects. Although UDCs allow to generate only the feasible states, the identification of
UDCs themselves is NP-hard (Shier and Whited 1986).

Until recently, all of the work on Markovian PERT networks uses the well-known CTMC
of Kulkarni and Adlakha (1986). In 2016, however, Creemers has introduced a new CTMC
that, in contrast to the CTMC of Kulkarni and Adlakha (1986), only keeps track of the
set of finished activities. As a result, the size of the state space has upper bound 2n. In
addition, Creemers (2016) no longer uses UDCs to structure the state space. Instead, he
uses a set of two ordered arrays that not only reduces the computational effort required to
generate/search the state space, but also reduces the number of states that are stored in
memory at any one time. Creemers (2016) uses this new approach to tackle the preemptive
stochastic resource-constrained project scheduling problem (PSRCPSP), and is able to easily
outperform existing optimal procedures for similar scheduling problems.

In this article, we use the CTMC and state-space structure of Creemers (2016). This
requires us to adopt a different approach than the one that is used in works that rely on
the CTMC of Kulkarni and Adlakha (1986). In these latter works, the optimal policy tries
to determine the optimal set of activities to start in each state. In this work, however, we
only keep track of the set of finished activities, and as such have no idea of which activities
are idle/ongoing. In other words, we cannot determine the optimal set of activities to start
(some of them might already be ongoing). Instead, we first determine the set of activities
that are potentially ongoing, and next, the optimal policy selects the optimal set of ongoing
activities. More formally, let F (t) and H(F, t) denote the set of finished and potentially
ongoing activities at time t, respectively. An activity i is potentially ongoing at time t if:
(1) i is not in F (t) and (2) j ∈ F (t) for all j for which (j, i) ∈ E. From H(F, t), policy
Π selects the set of ongoing activities. The start and completion of the project are defined
as F (0) = ∅ and F (t) = V for all t ≥ ω, where ω is the completion time of the project.
Without loss of generality, we omit index t when referring to sets F (t) and H(F, t).

The state of the system is represented by the set of finished activities (F ). Upon entry
of state (F ) : F 6= V , policy Π determines the set of ongoing activities O(Π, F ) ⊆ H(F ).
The optimal policy Π? selects O(Π?, F ) from H(F ) such that G(Π?, F ) is maximized, where
G(Π, F ) is the value function that returns the eNPV of the project upon entry of state (F ) if
policy Π is adopted. Given a set of ongoing activities O, the time until the first completion
of an activity i : i ∈ O is exponentially distributed with expected value (

∑
i∈O λi)

−1. The
probability that activity i : i ∈ O finished first equals λi(

∑
j∈O λj)

−1. Therefore, if policy Π
is adopted, the eNPV of the project upon entry of state (F ) equals:

G(Π, F ) =

∑
j∈O(Π,F )

λj

r +
∑

j∈O(Π,F )

λj

∑
i∈O(Π,F )

λi∑
j∈O(Π,F )

λj

G (Π, F ∪ {i}) +
∑

j∈O(Π,F∪{i})\O(Π,F )

cj

 , (3)

where
∑

j∈O(Π,F∪{i})\O(Π,F ) cj is the cash flow that is incurred when starting activities for the

first time upon entry of state (F ∪{i}). The optimal subset of ongoing activities is given by:

O(Π?, F ) = arg min
O⊆H(F )

∑
j∈O

λj

r +
∑
j∈O

λj

∑
i∈O

λi∑
j∈O

λj

G (Π?, F ∪ {i}) +
∑

j∈O(Π?,F∪{i})\O

cj

 . (4)

5

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

Finding the optimal set of ongoing activities requires us to enumerate all subsets of H(F ).
Note, however, that several heuristics may be devised in order to determine a “good” set of
ongoing activities. In addition, note that, if no set O ⊆ H(F ) can be found that results in
a positive eNPV, O(Π?, F ) = ∅ if project abandonment is allowed.

In order to structure the state space of the CTMC, we adopt the approach of Creemers
(2016), and use a set of two ordered arrays Xi and Xi+1. Array Xi contains all feasible
states in which i activities are finished. From a state (F ) ∈ Xi transitions are only possible
towards states in Xi+1. As a result, it suffices to keep only two arrays in memory. We use a
backward SDP-recursion to determine the maximum eNPV of a project. The recursion starts
in state (F ) = V , and completes upon reaching state (F ) = ∅. For each state (F ) ∈ Xi, we
use Eq. (3) to determine G(Π?, F ), with G(Π?, V ) = cn. After all states in Xi have been
processed, array Xi+1 is no longer needed, and it is used to store the value functions of all
states in which i−1 activities have finished (i.e., Xi+1 becomes Xi−1). Eventually, we obtain
G(Π?, ∅), the value function of state (F ) = ∅, and have determined the maximum eNPV of
the project.

5 PH-distributed activity durations

It is not always realistic to assume that activity durations are exponentially distributed.
To overcome this limitation, we use phase-type (PH) distributions. PH distributions are
mixtures of exponential distributions that can be used to approximate any positive-valued
distribution with arbitrary precision (Neuts, 1981; Osogami, 2005). Using PH distributions,
we can approximate the “true” duration distribution of an activity. The more accurate the
approximation, the more complex the PH distribution tends to become. For instance, we may
need a complex PH distribution if we want to match the first four moments of the duration
distribution. For matching the first two moments, however, we only require very simple PH
distributions. We use these simple PH distributions to match the first two moments of the
true duration distribution. Although this implies that the mean and the variance of the PH
distribution match those of the true distribution, it does not necessarily mean that higher
moments (i.e., skewness, kurtosis, . . . ) are also matched. In practice, however, the true
duration distribution is often unknown. In most cases, the mean and variance are the only
information available. Therefore, matching only the first two moments is sufficient/makes
sense from a practical point of view.

Let νi = σ2
i µ
−2
i denote the squared coefficient of variation (SCV) of the duration of an

activity i. If νi = 1, the duration distribution of activity i can be approximated by an
exponential distribution with rate parameter λi = µ−1

i . If νi < 1, on the other hand, we use
a hypo-exponential distribution (a generalization of the Erlang distribution) to approximate
the duration distribution of an activity i. The hypo-exponential distribution has zi = dν−1

i e
phases, and the first zi − 1 phases have exponential duration with rate parameter:

λi,1 = λi,2 = . . . = λi,zi−1 =
(zi − 1)−

√
(zi − 1)(ziνi − 1)

µi(1− νi)
. (5)

6

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

The last phase has exponential duration with rate parameter:

λi,zi =
1 +

√
(zi − 1)(ziνi − 1)

µi(1− ziνi + νi)
. (6)

Because an SCV of 1 is already seen as highly variable (see, e.g., Ballest́ın & Leus, 2009;
Ashtiani et al., 2011; Rostami et al., 2017), we do not consider the case where νi > 1.

Because PH distributions are mixtures of exponential distributions, a project network
with PH-distributed activity durations can be transformed into a Markovian PERT network
(see Creemers, 2015, for more details). As a result, we can once more use the SDP recursion
introduced in Section 4 to obtain the maximum eNPV of the project.

6 To preempt or not to preempt?

Although the CTMC of Creemers (2016) is able to drastically reduce memory requirements,
it also has one limitation: it allows activities to be preempted. The SNPV, however, does
not allow preemption. As such, the CTMC of Creemers (2016) is in fact not fit to solve the
SNPV. In this section, we justify the use of the CTMC of Creemers (2016) by proving that
it is globally optimal not to preempt activities when solving the SNPV. Moreover, this proof
holds even if activities have durations that are not PH distributed.

Lemma 1. If at time t there is an eligible activity i, and if a cash flow ci = 0 is incurred
at the start of activity i, then there exists an optimal continuation where activity i is put in
progress at time t.

Proof. The proof is obvious. There is no reason to postpone the start of an activity if no
cash flow is incurred at the start of that activity.

Theorem 1. If cash flows are incurred at the start of an activity, it is globally optimal to
not preempt activities.

Proof. Let Ot be the non-empty set of ongoing activities at time t. If we decide to preempt
activity i : i ∈ Ot at time t, the remainder of activity i joins the set of eligible activities.
Because cash flow ci has already been incurred at some time t′ ≤ t, a zero cash flow is
incurred upon the start of the remainder of activity i. From Lemma 1, however, it follows
that it is globally optimal to start any eligible activity that has a zero cash flow as early as
possible. As a result, it is globally optimal to start the remainder of activity i at time t (i.e.,
at the same time that activity i was preempted). In other words, it is globally optimal to
not preempt activity i.

7 Computational results

Even though the procedure of Creemers et al. (2010) is still the current state-of-the-art for
solving the SNPV, their procedure has significantly been improved by Creemers (2015), who
uses it to solve the SRCPSP. In order to take these improvements into account, we adapt

7

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

the procedure of Creemers (2015) such that it can be used to also solve the SNPV. Note that
both approaches still rely on the CTMC of Kulkarni and Adlakha (1986), and that they use
UDCs to structure the state space.

To test the performance of their procedure, Creemers et al. (2010) use a data set of
1,080 instances. They use RANGEN (Demeulemeester et al., 2003) to generate 30 projects
for each combination of project size (ranging from 12 to 122 activities) and order strength
(OS), where OS is a measure that reflects the density of the project network. Creemers et
al. (2010) consider OS equal to 0.4, 0.6, or 0.8. In what follows, we use the same data set to
compare the performance of our approach with the state-of-the-art procedure of Creemers
et al. (2010) and the adapted (and unpublished) procedure of Creemers (2015). To allow
for a fair comparison, we perform all tests on the same system: an AMD Phenom II 3.4 Ghz
desktop computer with 32GB of RAM.

Tables 1-3 compare the CPU times, the size of the state space, and the improvement
factors of the different approaches for different values of n and OS. Note that we do not
report on all combinations of n and OS because we can only compare the performance
for those instances that can be solved by Creemers et al. (2010). From Tables 1-3, it
is clear that major improvements have been made with respect to CPU times when we
compare the procedures of Creemers et al. (2010) and Creemers (2015). As also explained
in Creemers (2015), however, the main bottleneck is the size of the state space (i.e., the
memory requirement) rather than the CPU time. Because both procedures use the same
CTMC, the number of states remains unchanged. This also clearly illustrates the importance
of the CTMC of Creemers (2016): it allows to drastically reduce the size of the state space
(and hence memory requirements). Not only is the new approach significantly faster, it also
allows us to remove the bottleneck: memory is no longer a constraint. For instance, the
most complex instance that can be solved by Creemers et al. (2010) has a state-space size
of 867,589,281 states, and requires 318,464 seconds to solve (1,687 seconds when using the
adapted procedure of 2015). To solve the same instance, we require only 1,846,012 states,
and a computation time of 149.9 seconds.

Over all instances, our new approach improves computational efficiency by a factor of
600, and reduces memory requirements by a factor of 321. Table 3 also makes clear that the
difference in performance becomes bigger as the instances become more complex. This can
be explained by the fact that the maximum size of the state space is 3n for the procedures
of Creemers et al. (2010) and Creemers (2015), and only 2n for the new approach.

We conclude that our approach easily outperforms the procedures of Creemers et al.
(2010) and Creemers (2015), and that it is the new state-of-the-art for solving the SNPV.

Table 4 allows to further illustrate the computational performance of our approach. From
Table 4, it is apparent that memory requirements are never the problem. With a maximum
state-space size of 502,600,920 states, we are still well below the maximum size used by
Creemers et al. (2010). If we look at CPU times, however, we see that the more complex
instances take a very long time to solve. We conclude that the bottleneck has shifted from
memory to computation time.

8

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

Table 1: Comparison of computation times (in seconds) of the different approaches

2010 2015 2017

n OS Solved avg max avg max avg max

12 0.8 30 0.002 0.015 0 0 0 0
12 0.6 30 0.002 0.016 0 0 0 0
12 0.4 30 0.004 0.016 0.001 0.016 0 0

22 0.8 30 0.006 0.016 0 0 0 0
22 0.6 30 0.015 0.047 0.001 0.016 0.002 0.015
22 0.4 30 0.463 1.841 0.035 0.109 0.006 0.016

32 0.8 30 0.011 0.016 0.001 0.016 0.003 0.016
32 0.6 30 0.338 0.967 0.030 0.063 0.009 0.016
32 0.4 30 26.93 161.4 1.880 9.800 0.180 0.748

42 0.8 30 0.037 0.063 0.005 0.016 0.004 0.016
42 0.6 30 6.633 29.64 0.660 1.950 0.068 0.172
42 0.4 29 2,338 11,314 92.18 318.9 6.687 22.75

52 0.8 30 0.162 0.390 0.021 0.047 0.010 0.016
52 0.6 30 100.3 497.6 6.001 29.76 0.593 1.888
52 0.4 4 52,268 91,628 1,048 1,335 82.09 117.2

62 0.8 30 0.763 2.996 0.091 0.234 0.019 0.031
62 0.6 30 2,210 13,663 88.74 410.2 6.197 29.06

72 0.8 30 3.219 8.955 0.357 0.749 0.054 0.093
72 0.6 22 17,496 64,805 504.6 1,074 34.18 73.99

82 0.8 30 10.86 41.59 1.137 3.651 0.143 0.359
82 0.6 9 106,033 318,467 1,578 1,772 120.2 149.9

92 0.8 30 50.71 308.9 4.521 17.86 0.407 1.310

102 0.8 30 171.6 900.9 13.79 47.36 1.122 4.118

112 0.8 30 1,194 11,376 57.32 337.5 3.906 19.63

122 0.8 30 12,790 70,180 360.7 1,123 26.22 87.09

9

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

Table 2: Comparison of state-space size (in 1,000 states) required by the different approaches

2010 2015 2017

n OS Solved avg max avg max avg max

12 0.8 30 0.071 0.105 0.071 0.105 0.022 0.025
12 0.6 30 0.206 0.333 0.206 0.333 0.041 0.050
12 0.4 30 0.695 2.361 0.695 2.361 0.084 0.148

22 0.8 30 0.484 0.953 0.484 0.953 0.088 0.112
22 0.6 30 4.006 7.673 4.006 7.673 0.330 0.462
22 0.4 30 55.02 153.4 55.02 153.4 1.620 2.760

32 0.8 30 1.995 3.233 1.995 3.233 0.254 0.317
32 0.6 30 49.39 84.84 49.39 84.84 1.898 2.394
32 0.4 30 1,560 5,967 1,560 5,967 17.10 32.60

42 0.8 30 7.860 11.95 7.860 11.95 0.662 0.794
42 0.6 30 534.0 1543 534.0 1,543 9.480 16.58
42 0.4 29 47,073 146,560 47,073 146,560 171.7 316.9

52 0.8 30 26.67 53.48 26.67 53.48 1.544 2.194
52 0.6 30 4,346 13,894 4,346 13,894 40.38 67.98
52 0.4 4 526,020 737,048 526,020 737,048 1,055 1,349

62 0.8 30 92.00 236.9 92.00 236.9 3.564 5.362
62 0.6 30 42,279 165,103 42,279 165,103 175.3 365.8

72 0.8 30 286.8 605.6 286.8 605.6 7.754 11.39
72 0.6 22 216,028 426,644 216,028 426,644 593.1 860.1

82 0.8 30 829.7 2,278 829.7 2,278 16.36 27.89
82 0.6 9 733,449 867,589 733,449 867,589 1,585 1,846

92 0.8 30 2,596 9,322 2,596 9,322 34.06 55.88

102 0.8 30 6,868 22,963 6,868 22,963 66.67 113.2

112 0.8 30 24,236 117,261 24,236 117,261 146.9 308.5

122 0.8 30 146,639 461,146 146,639 461,146 515.8 916.4

10

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

Table 3: Average computational improvement factor for different combinations of approaches

CPU times State-space size

n OS Solved
2010 2010 2015 2010 2010 2015
vs. vs. vs. vs. vs. vs.

2017 2015 2017 2017 2015 2017

12 0.8 30 NA NA NA 3.280 0 3.280
12 0.6 30 NA NA NA 5.048 0 5.048
12 0.4 30 NA 7.750 NA 8.253 0 8.253

22 0.8 30 NA NA NA 5.522 0 5.522
22 0.6 30 10.04 14.13 0.711 12.14 0 12.14
22 0.4 30 75.57 13.36 5.658 33.96 0 33.96

32 0.8 30 4.247 10.55 0.403 7.854 0 7.854
32 0.6 30 36.74 11.20 3.279 26.03 0 26.03
32 0.4 30 149.2 14.32 10.42 91.27 0 91.27

42 0.8 30 9.082 7.858 1.156 11.87 0 11.87
42 0.6 30 97.50 10.05 9.699 56.33 0 56.33
42 0.4 29 349.7 25.36 13.79 274.1 0 274.1

52 0.8 30 15.87 7.831 2.026 17.27 0 17.27
52 0.6 30 169.2 16.72 10.12 107.6 0 107.6
52 0.4 4 636.7 49.87 12.77 498.6 0 498.6

62 0.8 30 39.28 8.429 4.660 25.81 0 25.81
62 0.6 30 356.7 24.91 14.32 241.2 0 241.2

72 0.8 30 59.22 9.021 6.564 36.99 0 36.99
72 0.6 22 511.9 34.67 14.76 364.3 0 364.3

82 0.8 30 76.03 9.548 7.963 50.71 0 50.71
82 0.6 9 881.8 67.20 13.12 462.7 0 462.7

92 0.8 30 124.7 11.21 11.12 76.24 0 76.24

102 0.8 30 152.9 12.44 12.29 103.0 0 103.0

112 0.8 30 305.7 20.84 14.67 165.0 0 165.0

122 0.8 30 487.8 35.46 13.76 284.3 0 284.3

11

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

Table 4: Average computation time (in seconds) and state-space size (in 1,000 states) re-
quired by our approach

CPU times State-space size

n OS Solved avg max avg max

10 0.8 30 0 0 0.022 0.025
10 0.6 30 0 0 0.041 0.050
10 0.4 30 0 0 0.084 0.148

20 0.8 30 0 0 0.088 0.112
20 0.6 30 0.002 0.015 0.330 0.462
20 0.4 30 0.006 0.016 1.620 2.760

30 0.8 30 0.003 0.016 0.254 0.317
30 0.6 30 0.009 0.016 1.898 2.394
30 0.4 30 0.180 0.748 17.10 32.60

40 0.8 30 0.004 0.016 0.662 0.794
40 0.6 30 0.068 0.172 9.480 16.58
40 0.4 30 11.85 161.5 193.8 834.8

50 0.8 30 0.010 0.016 1.544 2.194
50 0.6 30 0.593 1.888 40.38 67.98
50 0.4 30 255.1 1,111 1,660 3,901

60 0.8 30 0.019 0.031 3.564 5.362
60 0.6 30 6.197 29.06 175.3 365.8
60 0.4 30 8,454 62,555 13,791 38,029

70 0.8 30 0.054 0.093 7.754 11.39
70 0.6 30 58.57 261.6 727.9 1,749
70 0.4 30 131,386 750,675 102,937 502,601

12

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

8 Conclusion

In this article, we consider projects with stochastic activity durations that are modeled using
PH distributions. Intermediate cash flows are incurred during the execution of the project,
and a payoff is obtained upon completion of all project activities. For such projects, we find
globally optimal policies that maximize the eNPV.

We build on the work of Creemers et al. (2010), and use the CTMC of Creemers (2016)
to develop a new procedure to solve the SNPV. Although the CTMC of Creemers (2016) is
far more memory-efficient than the well-known CTMC of Kulkarni and Adlakha (1986), it
has one limitation: it allows activities to be preempted. The SNPV, on the other hand, does
not allow for preemption. In other words, the CTMC of Creemers (2016) is in fact not fit
to solve the SNPV. We prove, however, that it is globally optimal to not preempt activities
when solving the SNPV. Moreover, this proof holds even if activities have durations that are
not PH distributed.

We perform a computational experiment to: (1) assess the computational efficiency of our
approach and (2) compare our approach with the current state-of-the-art procedures. From
the computational experiment, it is clear that our new approach significantly outperforms the
current state-of-the-art procedure of Creemers et al. (2010) and the adapted/unpublished
procedure of Creemers (2015). On average, we reduce memory requirements by a factor
of 321, and are able to improve computational efficiency by a factor of 600. In addition,
the computational experiment also reveals that the bottleneck has shifted from memory
to computation time. Large/complex instances can be solved to optimality, albeit at a
significant computational cost.

Fortunately, our procedure can easily be transformed into a heuristic that requires much
less computation time. Our approach requires to determine the set of ongoing activities in
each state of the system. The optimal set of ongoing activities is found using full enumeration.
Instead of enumerating all possible sets of ongoing activities, a heuristic can be used to
quickly determine a “good” set of ongoing activities. Another direction for future research is
to extend our procedure to also include activity failures, resources, and/or multiple execution
modes.

References

[1] Ashtiani, B., Leus, R., & Aryanezhad, M. B. (2011). New competitive results for the
stochastic resource-constrained project scheduling problem: Exploring the benefits of
pre-processing. Journal of Scheduling, 14(2), 157-171.

[2] Ballest́ın, F., & Leus, R. (2009). Resource-constrained project scheduling for timely
project completion with stochastic activity durations. Production and Operations Man-
agement, 18(4), 459–474.

[3] Baroum, S. M., & Patterson, J. H. (1996). The development of cash flow weight proce-
dures for maximizing the net present value of a project. Journal of Operations Manage-
ment, 14(3), 209–227.

13

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

[4] Benati, S. (2006). An optimization model for stochastic project networks with cash
flows. Computational Management Science, 3(4), 271–284.

[5] Buss, A. H., & Rosenblatt, M. J. (1997). Activity delay in stochastic project networks.
Operations Research, 45(1), 126-139.

[6] Chen, W-N., & Zhang, J. (2012). Scheduling multi-mode projects under uncertainty to
optimize cash flows: A Monte Carlo ant colony system approach. Journal of Computer
Science and Technology, 27(5), 950–965.

[7] Coolen, K., Wei, W., Talla Nobibon, F., & Leus, R. (2014). Scheduling modular projects
on a bottleneck resource. Journal of Scheduling, 17(1), 67-85.

[8] Creemers, S., Leus, R., & Lambrecht, M. (2010). Scheduling Markovian PERT networks
to maximize the net present value. Operations Research Letters, 38(1), 51-56.

[9] Creemers, S. (2015). Minimizing the expected makespan of a project with stochastic
activity durations under resource constraints. Journal of Scheduling, 18(3), 263–273.

[10] Creemers, S., Leus, R., & De Reyck, B. (2015b). Project planning with alternative tech-
nologies in uncertain environments. European Journal of Operational Research, 242(2),
465–476.

[11] Creemers, S. (2016). The preemptive stochastic resource-constrained project scheduling
problem: an efficient globally optimal solution procedure, Working paper KBI 1626. KU
Leuven, Faculty of Economics and Business, Department of Decision Sciences and In-
formation Management.

[12] Demeulemeester, E. L., & Herroelen, W. S. (2002). Project Scheduling A Research
Handbook. Kluwer Academic Publishers.

[13] Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). A random network gen-
erator for activity-on-the-node networks. Journal of Scheduling, 6(1), 17-38.

[14] Elmaghraby, S. E., & Herroelen, W. S. (1990). The scheduling of activities to maximize
the net present value of projects. European Journal of Operational Research. 49(1),
35–49.

[15] Golenko-Ginzburg, D., & Gonik, A. (1997). Stochastic network project scheduling
with non-consumable limited resources. International Journal of Production Economics,
48(1), 29–37.

[16] Grinold, R. C. (1972). The payment scheduling problem. Naval Research Logistics Quar-
terly, 19(1), 123–136.

[17] Gu, H., Schutt, A., Stuckey, P. J., Wallace, M. G., & Chu, G. (2015). Exact and heuristic
methods for the resource-constrained net present value problem. In C. Schwindt, & J.
Zimmermann (Eds.), Handbook on Project Management and Scheduling Vol. 1. New
York: Springer.

14

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

[18] Gutin, E., Kuhn, D., & Wiesemann, W. (2015). Interdiction Games on Markovian PERT
Networks. Management Science, 61(5), 999–1017.

[19] Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational Research,
207(1), 1–14.

[20] Herroelen, W. S., Van Dommelen, P., & Demeulemeester, E.L. (1997). Project network
models with discounted cash flows a guided tour through recent developments. European
Journal of Operational Research, 100(1), 97–121.

[21] Igelmund, G., & Radermacher, F.J. (1983). Preselective strategies for the optimization
of stochastic project networks under resource constraints. Networks, 13(1), 1–28.

[22] Ke, H., & Liu, B. (2005). Project scheduling problem with stochastic activity duration
times. Applied Mathematics and Computation, 168(1), 342–353.

[23] Ke, H., & Liu, B. (2007). Project scheduling problem with mixed uncertainty of ran-
domness and fuzziness. European Journal of Operational Research, 183(1), 135–147.

[24] Ke, H., & Liu, B. (2010). Fuzzy project scheduling problem and its hybrid intelligent
algorithm. Applied Mathematical Modelling, 34(2), 301–308.

[25] Kulkarni, V., & Adlakha, V. (1986). Markov and Markov-regenerative PERT networks.
Opererations Research, 34(5), 769-781.

[26] Möhring, R.H. (2000). Scheduling under uncertainty: Optimizing against a randomizing
adversary. Lecture Notes in Computer Science, 1913, 15–26.

[27] Neumann, K., & Zimmermann, J. (2000). Procedures for resource leveling and net
present value problems in project scheduling with general temporal and resource con-
straints. European Journal of Operational Research, 127(2), 425–443.

[28] Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins
University Press.

[29] Osogami, T. (2005). Analysis of multiserver systems via dimensionality reduction of
Markov chains. Pittsburgh: Carnegie Mellon University Ph. D. dissertation.

[30] Özdamar, L., & Dündar, H. (1997). A flexible heuristic for a multi-mode capital con-
strained project scheduling problem with probabilistic cash inflows. Computers & Op-
erations Research, 24(12), 1187–1200.

[31] Pinder, J. P., & Marucheck, A. S. (1996). Using discounted cash flow heuristics to
improve project net present value. Journal of Operations Management, 14(3), 229–240.

[32] Rostami, S., Creemers, S., & Leus, R. (2017). New strategies for stochastic resource-
constrained project scheduling. Journal of Scheduling. doi:10.1007/s10951-016-0505-x.

[33] Russell, A. H. (1970). Cash Flows in Networks. Management Science, 16(5), 357–373.

15

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.11.027 • www.stefancreemers.be • info@stefancreemers.be

[34] Shavandi, H., Najafi, A. A., & Moslehirad, A. (2012). Fuzzy project scheduling with
discounted cash flows. Economic Computation & Economic Cybernetics Studies, 46(1),
219–232.

[35] Schwindt, C., & Zimmermann, J. (2001). A steepest ascent approach to maximizing
the net present value of projects. Mathematical Methods of Operations Research, 53(3),
435–450.

[36] Shier, D. R., & Whited, D. E. (1986). Iterative algorithms for generating minimal cutsets
in directed graphs. Networks, 16(2), 133–147.

[37] Sobel, M. J., Szmerekovsky, J. G., & Tilson, V. (2009). Scheduling projects with stochas-
tic activity duration to maximize expected net present value. European Journal of Op-
erational Research, 198(1), 697-705.

[38] Stork, F. (2001). Stochastic Resource-Constrained Project Scheduling. Berlin: Technis-
che Universität Ph. D. dissertation.

[39] Tavares, L. V., Ferreira, J. A. A., & Coelho, J. S. (1998). On the optimal management
of project risk. European Journal of Operational Research, 107(2), 451–469.

[40] Tsai, Y-W., & Gemmill, D. D. (1998). Using tabu search to schedule activities of stochas-
tic resource-constrained projects. European Journal of Operational Research, 111(1),
129–141.

[41] Uçal, İ., & Kuchta, D. (2011). Project scheduling to maximize fuzzy net present value.
In Proceedings of the world congress on engineering (pp. 1184–1189).

[42] Wei, W., Coolen, K., & Leus, R. (2013). Sequential testing policies for complex systems
under precedence constraints. Expert Systems Applications, 40(2), 611-620.

[43] Wiesemann, W., Kuhn, D., & Rustem, B. (2010). Maximizing the net present value of a
project under uncertainty. European Journal of Operational Research, 202(2), 356–367.

[44] Wiesemann, W., & Kuhn, D. (2015). The stochastic time-constrained net present value
problem. In C. Schwindt, & J. Zimmermann (Eds.), Handbook on Project Management
and Scheduling Vol. 2. New York: Springer.

16

http://dx.doi.org/10.1016/j.ejor.2017.11.027
http://www.stefancreemers.be
mailto:info@stefancreemers.be

	Introduction
	Literature review
	Definitions and problem description
	CTMC and SDP recursion
	PH-distributed activity durations
	To preempt or not to preempt?
	Computational results
	Conclusion

