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Abstract - We tackle precedence-constrained sequencing on a single machine in
order to minimize total weighted tardiness. Classic dynamic programming (DP)
methods for this problem are limited in performance due to excessive memory
requirements, particularly when the precedence network is not sufficiently dense.
Over the last decades, a number of precedence theorems have been proposed,
which distinguish dominant precedence constraints for a job pool that is initially
without precedence relation. In this paper, we connect and extend the findings
of the foregoing two strands of literature. We develop a framework for apply-
ing the precedence theorems to the precedence-constrained problem to tighten
the search space, and we propose an exact DP algorithm that utilizes a new
efficient memory management technique. Our procedure outperforms the state-
of-the-art algorithm for instances with medium to high network density. We also
empirically verify the computational gain of using different sets of precedence
theorems.
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1 Introduction

We consider a set N = {1, . . . , n} of jobs (activities) and a set E of precedence constraints:
for any i, j ∈ N , if (i, j) ∈ E then job i should be scheduled before job j. More specifically, E
is a strict partial order on N , i.e., it is irreflexive (pairs (j, j) /∈ E), asymmetric (if (i, j) ∈ E
then (j, i) /∈ E), and transitive (if (i, j), (j, k) ∈ E then (i, k) ∈ E). Associated with each
job i ∈ N is a processing time pi ∈ N0, a due date di ∈ N and a tardiness weight wi ∈ N0.
All jobs are available at time 0 to be processed on a single continuously available machine.
The problem is to find a sequence s = (s1, s2, . . . , sn) of the jobs that minimizes the total
weighted tardiness

T (s) =
∑
i∈N

wi max{0, Ci − di},

where Ci =
∑`

j=1 psj is the earliest completion time of job i, and s` = i. We define BE
i =

{j ∈ N |(j, i) ∈ E} and AE
i = {j ∈ N |(i, j) ∈ E} as the job sets that should be processed

before and after i according to E, respectively. Using the notation of Graham et al. (1979),
this problem is denoted by 1|prec|

∑
wjTj. The problem is strongly NP-hard (Lawler, 1977).
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Two related problems have received quite some attention in the scheduling literature.
The single-machine scheduling problem to minimize total weighted tardiness, 1||

∑
wjTj, has

been surveyed by Abdul-Razaq et al. (1990), who describe various dynamic programming
(DP) and branch-and-bound (B&B) algorithms. Potts and Van Wassenhove (1985) propose
a B&B algorithm that solves instances with up to 50 jobs to optimality within practical time
and memory limits. Tanaka et al. (2009) extend the Successive Sublimation DP (SSDP)
of Ibaraki and Nakamura (1994) and solve relatively large instances with up to 300 jobs.
The precedence-constrained single-machine scheduling problem to minimize total weighted
completion time, 1|prec|

∑
wjCj, has been studied by, among others, Sidney (1975); Lawler

(1978); Potts (1985); Hoogeveen and van de Velde (1995); van de Velde (1995); Margot et al.
(2003); Correa and Schulz (2005); Schulz and Uhan (2011). Instances with up to 100 jobs
were solved to optimality already 30 years ago (Potts, 1985).

In contrast to the two aforementioned problems, the literature on 1|prec|
∑
wjTj, which

is a generalization, is rather scarce. Schrage and Baker (1978) propose a DP method, the
performance of which is very limited mainly due to memory insufficiency. Tanaka and Sato
(2013) propose an extension of the algorithm of Tanaka et al. (2009) for the precedence-
constrained problem that solves instances with up to 100 jobs (within practical time and
memory limits) when the density of the precedence network is very low or very high. Davari
et al. (2016) also report computational results for this problem, although their algorithm is
developed for a generalized variant with release dates and deadlines; their algorithm solves
instances with up to 50 activities.

2 Precedence theorems

Below, we will distinguish the set E of technological precedence constraints from the set D
of all dominant precedence constraints, where a precedence constraint (i, j) is dominant iff
there is at least one optimal solution in which i precedes j. Seeing that all feasible solutions
respect E, we have D ⊇ E. In other words, D is the union of all optimal complete orders.
A set of precedence constraints is called acyclic only if it is transitive and asymmetric. If
there exist multiple optimal solutions then D is not acyclic. A selection S ⊆ D is said
to be dominant if there is at least one optimal solution that respects all its constraints.
Consequently, acyclicity is a necessary but not sufficient condition for the dominance of sets
of precedence constraints. Below, we describe precedence theorems and dominance rules to
identify a dominant selection that extends E.

2.1 Precedence theorems for E = ∅
The three precedence theorems that Emmons (1969) proposes, are arguably some of the
most fruitful results for 1||

∑
Tj; most of the exact approaches rely on these theorems. Later

on, Rinnooy Kan et al. (1975) and Rachamadugu (1987) have extended Emmons’ results
to the weighted tardiness case 1||

∑
wjTj. These theorems distinguish dominant precedence

constraints for a job pool with E = ∅. Starting from S = ∅ and using Emmons’ theorems,
one can add job pairs to S in an iterative fashion. Next, by solving the problem instance
with precedence constraints S to optimality, an optimal solution to the original instance with
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(a) Initial network

i pi wi di

1 9 4 5

2 2 1 1

3 2 8 6

4 2 7 2

(b) Job parameters

1

2

3

4

(c) Transitive closure of E∪{(3, 2)}

Figure 1: An example instance

E = ∅ can be found. In line with Emmons (1969) and Rinnooy Kan et al. (1975), for any
X ⊆ N , we define P (X) =

∑
i∈X pi and X̄ = N \X. Similar to BE

i and AE
i , we define BS

i

and AS
i based on S instead of E. Given a dominant S, and i, j ∈ N , Emmons’ conditions

are as follows:

E1. pi ≤ pj and wi ≥ wj and di ≤ max{dj, P (BS
j ) + pj}.

E2. wi ≥ wj and dj ≥ max{di, P (ĀS
i )− pj}.

E3. dj ≥ P (ĀS
i ).

Emmons (1969) proves that when E = ∅, any of these conditions is sufficient to conclude
(i, j) ∈ D. More recently, Kanet (2007) has generalized Emmons’ results with seven new
conditions (K1 to K7). These are stated in Appendix. Emmons (1969) and Kanet (2007)
show that combining the dominant constraints that are identified by these theorems itera-
tively does not remove all optimal solutions, i.e., any thus-obtained S is dominant iff it is
acyclic.

Given a dominant S and job pair (i, j), we define I(S, i, j) as the indicator function of
Emmons’ and Kanet’s theorems that returns 1 if (i, j) satisfies at least one condition, and
0 otherwise. Therefore, when E = ∅, I(S, i, j) = 1 implies (i, j) ∈ D. We also define
C(S) = E ∪ {(i, j)|I(S, i, j) = 1}. When E = ∅ then C(S) ⊆ D, but C(S) is not necessarily
acyclic. Moreover, extending S iteratively can only improve the theorem conditions for other
job pairs to be identified as dominant. Hence, for given dominant S1 and S2 the following
result is intuitive.

Proposition 1. If S1 ⊂ S2 then C(S1) ⊆ C(S2).

2.2 Extended precedence theorems for general E

With a general set E and for any (i, j), the acyclicity of E ∪ {(i, j)} becomes a necessary
condition for the dominance of (i, j). Furthermore, the precedence theorems that were
discussed in Section 2.1 may not be applicable as is. Consider the example depicted in
Figure 1, with E = {(1, 3), (2, 4)} and S = E. We investigate an additional precedence
constraint from job 3 to job 2. Since I(E, 3, 2) = 1 (based on K1, K4 and K5), we add the
pair (3, 2) to S. As depicted in Figure 1c, (3, 2) implies the transitive edges (1, 2), (1, 4) and
(3, 4). Thus, we end up with the sequence s1 = (1, 3, 2, 4) with T (s1) = 159, while for the
optimal sequence s∗ = (2, 4, 1, 3), T (s∗) = 119. The two transitive edges (1, 2) and (1, 4)
are not dominant, and consequently remove the optimal solutions. This counterexample
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From: job j M job i

To: βi job i γij job j αj

(a) Swap

From: job j M job i

To: M \ αj job i job j αj

(b) Insert-after

Figure 2: Swap and insert-after strategies when E 6= ∅

shows that with general E, Kanet’s and Emmons’ conditions cannot be directly invoked,
i.e., I(S, i, j) = 1 is not sufficient to conclude (i, j) ∈ D. Hence, if E 6= ∅ then C(S) is not
necessarily a subset of D.

Kanet (2007) uses “swap” and “insert-after” strategies to prove his dominance theorems.
Conditions E2–3 and K4–7 are obtained via the insert-after strategy, while Conditions E1
and K1–3 are derived using the swap strategy. Condition K1 generalizes E1, K4 and K5
generalize E2, K7 is the same as E3, and K2, K3 and K6 are entirely new in the sense that
they can lead to the conclusion that a pair (i, j) ∈ D even when wi < wj.

An illustration of the swap and insert-after strategies for general E and a given domi-
nant S is provided in Figure 2, where βi = (M ∩BE

i ), αj = (M ∩AE
j ) and γij = M \(αj∪βi).

The symbol M represents the set of intermediate jobs between i and j. “From” represents
any sequence that respects S, and “To” is the resulting sequence after swapping j and i or
inserting j after i. The latter sequence respects E but not necessarily S, i.e., a number of
dominant precedence constraints in S \ E might be violated. A sufficient condition for the
dominance of (i, j) has the structure

LB(TI(i)) ≥ UB(TD(j)) + UB(TD(γij)) + UB(TD(αj)), (1)

where LB(·) and UB(·) are lower and upper bound functions, respectively, TI(i) is the
tardiness improvement of job i, and TD(i) the tardiness degradation. Note that TD(βi) = 0.

If an activity pair (i, j) satisfies Condition (1) for every feasible M and G(N,E∪{(i, j)})
is acyclic, then if j precedes i in a given schedule, we can exchange the two jobs without
increasing the tardiness function. Thus, for an acyclic set of activity pairs {(i, j), (k, l), . . . }
that each satisfy Condition (1), any optimal schedule that is not compatible with one or
more of these pairs cannot be harmed by making as many interchanges as necessary to
obtain an optimal schedule that respects all the pairs. Therefore, if the “To” sequence does
not respect S, then by a finite number of swaps and insert-afters, it can be transformed into a
sequence that respects S, such that the final sequence is at least as good as the intermediate
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sequences. Given an instance G(N,E), let V ⊆ D be the set of all activity pairs that satisfy
Condition (1). We conclude:

Proposition 2. Any S ⊇ E for which (S \ E) ⊆ V is dominant iff S is acyclic.

Hence, we search for an inclusion-maximal acyclic S ⊇ E such that (S \ E) ⊆ V .
In Condition (1), the completion times of jobs i and j depend on P (αj) and P (βi), so TI(i)

and TD(j) depend on βi and αj. Also, TD(αj) can be positive in both strategies. Finally,
even if pi ≤ pj, the value TD(γij) can still be positive in the swap strategy. We therefore
extend Emmons’ and Kanet’s theorems under the extra requirement that αj = βi = ∅.

Proposition 3. AE
j ⊆ AS

i is a sufficient condition for αj = ∅.

Proof. Proof. Remember that αj = M ∩ AE
j . The requirement that αj is empty means all

jobs in AE
j are scheduled after job i. Intuitively, the condition AE

j ⊆ AE
i is sufficient to ensure

αj = ∅. Since the “From” sequence is feasible not only to E but also to S, the condition
AE

j ⊆ AS
i is also sufficient.

Analogously, we can prove:

Proposition 4. BE
i ⊆ BS

j is a sufficient condition for βi = ∅.

The conditions AE
j ⊆ AE

i , AS
j ⊆ AE

i and AS
j ⊆ AS

i are also sufficient for αj = ∅ and
BE

i ⊆ BE
j , BS

i ⊆ BE
j and BS

i ⊆ BS
j are also sufficient for βi = ∅, but AE

j ⊆ AS
i and BE

i ⊆ BS
j

are easier to fulfill compared to the other alternatives, since E ⊆ S.
When αj = βi = ∅, a sufficient condition for the dominance of (i, j) takes the form

LB(TI(i)) ≥ UB(TD(j)) + UB(TD(M)). (2)

Kanet (2007) proves that given a dominant S and (i, j) ∈ N ×N , if I(S, i, j) = 1 then (i, j)
satisfies Condition (2). We summarize our findings with the following formal statements.

Proposition 5. When E 6= ∅ then each of Conditions E1 and K1–3 together with AE
j ⊆ AS

i

and BE
i ⊆ BS

j imply (i, j) ∈ D.

Proposition 6. When E 6= ∅ then each of Conditions E2–3 and K4–7 together with AE
j ⊆ AS

i

imply (i, j) ∈ D.

In the instance of Figure 1, (3, 2) /∈ D because AE
2 * AS

3 and BE
3 * BS

2 .
Given a dominant S ⊇ E, and a pair (i, j) such that S ∪ {(i, j)} is acyclic, we define

Γ(S, i, j) = {(k, l) ∈ N ×N |k ∈ (BE
i \BS

j ) ∪ {i}, l ∈ (AE
j \ AS

i ) ∪ {j}} (3)

as the set of all transitive pairs associated with (i, j) that are not yet included in S.

Proposition 7. If Γ(S, i, j) ⊆ C(S) then (i, j) ∈ D.

5

http://dx.doi.org/10.1016/j.ejor.2018.06.004
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2018.06.004 • www.stefancreemers.be • info@stefancreemers.be

Proof. Proof. Given a set X of pairs, let X+ be the transitive closure of X. Assume that
we add the pairs in Γ(S, i, j) to S, sequentially. We will do this in a specific order. If
Γ(S, i, j) ⊆ C(S) then in the first step, there exist (k1, l1) ∈ Γ(S, i, j) and S1 = S ∪{(k1, l1)}
such that S+

1 ∩ (Γ(S, i, j) \ S1) = ∅. In other words, adding (k1, l1) to S does not imply any
transitive pairs within Γ(S, i, j). For such a pair (k1, l1) we have AE

l1
⊆ AS

k1
and BE

k1
⊆ BS

l1
.

Consequently, based on Proposition 5-6, (k1, l1) ∈ D. Analogously, in step q > 1, there exist
(kq, lq) ∈ Γ(S, i, j) and Sq = Sq−1 ∪ {(kq, lq)} such that S+

q ∩ (Γ(S, i, j) \ Sq) = ∅. Thus,
(kq, lq) ∈ D. We conclude that if Γ(S, i, j) ⊆ C(S) then all the pairs in Γ(S, i, j) including
(i, j) can be verified to be dominant and S ∪ {(i, j)} is a dominant set.

2.3 Algorithmic application of the precedence theorems

In this section, we illustrate the algorithmic application of Proposition 7. Given a domi-
nant partial order S that extends E, we propose a framework, Frame1, for evaluating the
dominance of a given pair (i, j) without generating C(S) explicitly.

The idea of Frame1 is to sequentially add the pairs in Γ(S, i, j) to S such that each
addition entails no transitive pair within Γ(S, i, j) (as in the proof of Proposition 7). To
this end, for each (k, l) ∈ Γ(S, i, j) we determine the longest path between k and l in the
transitive reduction of the graph G(N,S ∪ {(i, j)}). We assume unit length (weight) for
all the edges (activity pairs). The Floyd-Warshall algorithm, for instance, can be used to
calculate these longest paths efficiently. We define L(S, i, j) as a sequence of the pairs in
Γ(S, i, j) in non-increasing order of their corresponding longest path length.

Next, Frame1 checks the pairs in L(S, i, j) sequentially. Let (kq, lq) be the qth element
of L(S, i, j). In the first step, we check (k1, l1): if I(S, k1, l1) = 1 then we define S1 =
S ∪ {(k1, l1)} and we proceed to the next step; otherwise, we terminate the framework by
concluding that (i, j) /∈ D. Analogously, in any step q > 1, if I(Sq−1, kq, lq) = 1 then we
construct Sq = Sq−1 ∪ {(kq, lq)}. Note that by considering the pairs in Γ(S, i, j) in the
order of L(S, i, j), based on Proposition 1, we benefit most from possible improvements in
the theorem conditions for identifying the dominance of (kq, lq). If all the activity pairs in
L(S, i, j) are successfully added to S, then the framework ends with a dominant S ′ ⊃ E that
includes (i, j).

Figure 3 provides an illustration of the application of Frame1 to the instance depicted
in Figure 1a. For this example we have L(E, 3, 2) = ((1, 4), (1, 2), (3, 4), (3, 2)) for the corre-
sponding longest path lengths 3, 2, 2 and 1 in the transitive reduction of G(N,E ∪ {(3, 2)}).
Given the parameters in Figure 1b, the framework terminates in Figure 3a as I(E, 1, 4) = 0,
by concluding that (3, 2) /∈ D. For other parameter values, if (3, 2) ∈ D then the framework
adds further pairs as depicted in Figures 3b-3d.

3 DP algorithm

In this section, we propose a DP algorithm for solving 1|prec|
∑
wjTj. The recursion (Sec-

tion 3.1) is the same as in Schrage and Baker (1978), but our DP utilizes a more efficient
memory management technique (Section 3.2) that enables us to solve larger instances with
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(a) Add (1, 4)

1

2

3

4

(b) Add (1, 2)

1

2

3

4

(c) Add (3, 4)

1

2

3

4

(d) Add (3, 2)

Figure 3: An example of the application of Frame1

the same memory limit. In order to decrease the size of the state space, we replace E by the
inclusion-maximal dominant selection S ⊇ E that was discussed in Section 2.

3.1 DP recursion

Each DP state Y ⊆ N represents a subproblem with |Y | to-be-scheduled jobs, where the
first n− |Y | positions of the sequence are filled and we decide the job in the (n− |Y |+ 1)th

position. The state space Φ contains all feasible states. A state Y is feasible if it respects
the precedence constraints, that is, ∀i ∈ Y : AS

i ⊂ Y .
Given a state Y ∈ Φ, let Q(Y ) = {i ∈ Y | BS

i ∩Y = ∅} be the set of tasks that are eligible
to be scheduled. Hence, Q(Y ) contains all the possible decisions to be made in Y . Selecting
job i ∈ Q(Y ) results in a transition to state Y \ {i}. The value function F computes the
minimum total cost for the subproblem corresponding to Y . Defining Ci = P (Ȳ ) + pi, the
value function can be computed via the backward recursion

F (Y ) = min
i∈Q(Y )

{wi max{0, Ci − di}+ F (Y \ {i})}. (4)

Starting from the unique final state Y = ∅ with F (∅) = 0, the recursion iteratively calculates
the objective value for the preceding states by (4).

3.2 DP memory management

Schrage and Baker (1978) generate Φ in increasing (lexicographic) order of the binary rep-
resentation τ(Y ) =

∑
i∈Y 2i−1 of the states Y . The main drawback of this approach is that

7

http://dx.doi.org/10.1016/j.ejor.2018.06.004
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2018.06.004 • www.stefancreemers.be • info@stefancreemers.be

it requires the storage of the entire state space. We propose a novel memory management
technique that drastically reduces the number of states that are stored in memory simultane-
ously. In the recursion, any state that immediately follows an arbitrary Y consists of |Y |− 1
jobs. For any f ≤ n, let Υf ⊂ Φ denote the set of all feasible states Y with |Y | = f . Also,
for a given Y ∈ Φ, let H(Y ) = {i ∈ Ȳ | AS

i ⊆ Y } be the set of jobs in Ȳ with all successors
in Y . Hence, for any i ∈ H(Y ), Y ∪ {i} is a feasible state. For a given f (0 < f ≤ n) we
have

Υf =
⋃

Y ∈Υf−1

{Y ∪ {i} | i ∈ H(Y )} (5)

and Υ0 = {∅}. Thus, for any f ≤ n, the generation of Υf depends only on Υf−1. In
the example of Figure 1a, from Υ0 = {Y0} with Y0 = ∅ we have H(Y0) = {3, 4}, and
Υ1 = {Y1, Y2} with Y1 = {4} and Y2 = {3}. Moreover, according to (4), for any state
Y ∈ Υf the objective value F (Y ) is determined by the objective value of states in Υf−1. We
conclude that, once Υf is created (Equation (5)) and the objective value of its members is
computed (Equation (4)), the set Υf−1 can be discarded from memory. This means that at
any time during the execution of the DP we need to store at most two sets of states (Υf−1

and Υf ). This enables us to solve larger instances (with respect to the number of jobs) that
were not solvable (within practical memory limits) before.

Next, we elaborate an algorithm that generates Υf from Υf−1. The elements of the
resulting Υf are generated in decreasing order of their binary representation if the states in
Υf−1 are processed in decreasing binary order, and for each state Y ∈ Υf−1, the activities in
H(Y ) are scanned in decreasing index order (i precedes j if i > j). In the previous example,
we consider the states in Υ1 (with τ(Y1) = 8 and τ(Y2) = 4) in decreasing binary order (Y1

precedes Y2), and the elements of H(Y1) = {2, 3} and H(Y2) = {1, 4} in decreasing index
order (e.g., for Y1, 3 precedes 2). Consequently, the first generated state is Y3 = {3, 4}, which
is obtained by adding job 3 to Y1. The next generated states are Y4 = {2, 4}, Y5 = {3, 4} and
Y6 = {1, 3}, respectively. Since Y5 = Y3, the resulting Υ2 is generated in decreasing binary
order.

To check whether a newly generated state Y ′ already exists in Υf i.e., Y ′ ∈ Υf , one
straight-forward way is to employ binary search in Υf , with time complexity O(log |Υf |).
However, the binary-ordered generation of the states in Υf allows us to perform this check
in O(1). The algorithmic description of this subroutine is provided in Algorithm 1, where
H(Y )[i] is defined as the ith element in H(Y ). Moreover, let Υf

i be the ith element of Υf ,
and u be counter of the states of Υf that are already generated by Algorithm 1. Assuming
that the job indices form a topological order of G(N,S), we prove:

Theorem 1. In Algorithm 1, Any newly generated state Y ′ has not been generated before iff
τ(Y ′) < τ(Υf

u).

Proof. Proof. Given Υf−1, we intend to obtain Υf . We assume that the states in Υf−1 are
in decreasing binary order, i.e., for any 2 ≤ i ≤ |Υf−1| we have τ(Υf−1

i−1 ) > τ(Υf−1
i ). We

also assume that for each Y ∈ Υf−1 the jobs in H(Y ) are in decreasing index order, i.e.,
for 2 ≤ i ≤ |H(Y )| we have H(Y )[i − 1] > H(Y )[i]. In the first step, Υf

1 is produced by
adding H(Υf−1

1 )[1] to Υf−1
1 . This state is obviously unique. In any step q > 1, a state

Y ′ is generated. If Y ′ is created from the same state in Υf−1 as for Υf
u then we have
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Algorithm 1 Υf generation subroutine

Input: Υf−1 in decreasing binary order and ∀Y ∈ Υf−1 : H(Y ) in decreasing index order

Output: Υf in decreasing binary order

u = 1

Υf
1 = Υf−1

1 ∪H(Υf−1
1 )[1]

for i = 1 to |Υf−1| do
for j = 1 to |H(Υf−1

i )| do
Y ′ = Υf−1

i ∪H(Υf−1
i )[j]

if τ(Y ′) < τ(Υf
u) then

u = u+ 1

Υf
u = Y ′

end if

end for

end for

return Υf

τ(Y ′) < τ(Υf
u), because a job with smaller index is added to the same state. Next, we

assume that Υf
u and Y ′ are produced from Υf−1

a and Υf−1
b , respectively, with a < b. Let

g = min{i ∈ Y f−1
b } and h = max{i ∈ Υf−1

a \ Υf−1
b }. Since g ∈ Y f−1

b while h /∈ Y f−1
b , we

have h 6= g. If h < g then Υf−1
a < Υf−1

b , which contradicts the decreasing order of the

states in Υf−1. Therefore, h > g. We have τ(Y ′) ≥ τ(Υf
u) only if H(Υf−1

b )[1] ≥ h. In this

case, since the job indices form a topological order of G(N,S), we know that BS
g ∩Υf−1

b = ∅
and g /∈ AS

H(Υf−1
b )[1]

. Consequently, Y ∗ = Υf−1
b \ {g} ∪ {H(Υf−1

b )[1]} is a feasible state

with cardinality f − 1. Since τ(Y ∗) > τ(Υf−1
b ), there exists c ≤ a such that the state

Υf−1
c = Y ∗. Knowing that Y ′ = Y ∗ ∪ {g}, we conclude that Y ′ has already been generated.

If τ(Y ′) < τ(Υf
u), on the other hand, then Y ′ is new. In conclusion, Y ′ has already been

generated iff τ(Y ′) ≥ τ(Υf
u).

In the previous example we have τ(Y5) > τ(Y4), so Y5 is not stored.

Proposition 8. For each f (0 ≤ f ≤ n), Υf generated by Algorithm 1 includes all the states
Y ∈ Φ with |Y | = f , and consequently,

⋃
0≤f≤n Υf = Φ.

Proof. Proof. Given Υf−1, and at each iteration corresponding to the loop counter i, Al-
gorithm 1 considers all the jobs in H(Υf−1

i ). Therefore, it generates all the feasible states
that can be obtained from Υf−1

i . Although the algorithm stores only the states Y ′ with
τ(Y ′) < τ(Υf

u), Theorem 1 proves that all the discarded states were already generated and
stored by the algorithm in the previous iterations. Hence, the resulting Υf includes all the
feasible states Y with |Y | = f , and consequently

⋃
0≤f≤n Υf = Φ.
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ρ

n

40 50 100

min avg min avg min avg

0.2 0.43 0.63 0.56 0.68 0.77 0.82

0.1 0.15 0.28 0.21 0.35 0.49 0.57

0.05 0.04 0.10 0.06 0.11 0.14 0.23

0.02 0.01 0.03 0.01 0.03 0.02 0.04

0.01 < 0.01 0.01 < 0.01 0.01 < 0.01 0.01

0.005 0.00 0.01 < 0.01 0.01 < 0.01 0.01

0 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: OS1 of the Tanaka dataset

4 Computational results

All the experiments are performed on an Intel Core i5-4590, 3.3 GHz computer with 32 GB
RAM. The memory consumption and CPU times are limited to 8 GB and 5400 seconds,
respectively.

4.1 Instances

We consider two sets of instances to evaluate the performance of our DP algorithm. The first
dataset is obtained from the OR-Library instances of 1||

∑
wjTj with 40, 50 and 100 jobs1.

Tanaka and Sato (2013) then add precedence constraints to the instances as in Potts and
Van Wassenhove (1985) and Hoogeveen and van de Velde (1995): for any i, j ∈ N, i < j, the
precedence constraint (i, j) is imposed with a specified probability ρ, which is chosen from
{0.005, 0.01, 0.02, 0.05, 0.1, 0.2}. We refer to this dataset as the Tanaka dataset2.

In our experiments we have observed that the probability ρ is not a suitable predictor for
the difficulty of an instance (required runtime and memory), and that the the order strength
(OS) is far more informative. The value OS measures the density of the precedence network,
and is defined as the number of precedence-related activity pairs divided by the maximum
possible number of such pairs. Demeulemeester et al. (2003) propose the random network
generator RanGen, which takes OS as input parameter for the generation. Below, we denote
the OS of the generated instance before and after applying precedence theorems by OS1 and
OS2, respectively.

In Table 1 we report the minimum (min) and average (avg) OS1 of Tanaka’s instances.
The table shows that very low OS values are over-represented, i.e., 57% of the instances
(ρ ∈ {0, 0.005, 0.01, 0.02}) have very low densities (OS1 ≤ 0.04), and consequently they
will have very similar runtime and memory requirements. Moreover, each ρ value results
in instances with various OS values, and so instances of different difficulty levels would be
categorized within the same setting (n and ρ). We therefore use RanGen to generate a second
set of instances where OS1 ∈ {0, 0.2, 0.4, 0.6, 0.8} and n ∈ {20, 40, 60, 80, 100, 120}. We will

1http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html
2https://sites.google.com/site/shunjitanaka/prec-single
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OS1

n

20 40 60 80 100 120

# ∆ # ∆ # ∆ # ∆ # ∆ # ∆

0.8 125 21.24 125 16.55 125 13.11 125 10.87 125 10.45 125 8.93

0.6 125 25.00 125 17.01 125 14.29 125 11.37 125 10.40 125 10.32

0.4 125 26.02 125 16.66 125 13.26 125 13.01 112 9.92 33 10.33

0.2 125 26.43 125 17.05 125 12.61 37 10.49 20 12.85 11 9.61

0 125 30.66 125 21.04 125 16.13 98 12.72 72 13.35 56 9.47

Table 2: Partitioning Φ: improvements in memory requirement

n 20 40 60 80 100 120

∆ 33.64 24.48 20.18 17.57 15.76 14.42

Table 3: Partitioning Φ when S = E = ∅

refer to this dataset as the standard dataset. The same method and parameters are used
as in Potts and Van Wassenhove (1985) to generate job durations, due dates and tardiness
weights. Hence, for each setting (each n and OS1), we generate 125 instances, which adds
up to 3750 instances in total.

4.2 Memory gain of partitioning the state space

Table 2 provides details on the efficiency of the memory management technique proposed in
Section 3.2. We define

∆ =
max0<f≤n{Υf−1 + Υf}

|Φ|
× 100

as the maximum percentage of Φ that is simultaneously stored in memory. The results
pertain to the standard dataset; the average ∆ is computed over the instances that are
successfully solved to optimality (#). Based on the table, our technique for partitioning the
state space is between 3.26 and 11.20 times more efficient than storing the entire state space
(as done by Schrage and Baker (1978)). The difference is higher for larger instances, for
which memory management is of higher importance.

For the instances without precedence constraints (S = E = ∅), we can express the
memory gain of our proposed technique in closed form. Given an instance of size n, we have
|Φ| =

∑
0≤f≤n

(
n
f

)
, and max0<f≤n{Υf−1 + Υf} =

(
n

n/2−1

)
+
(

n
n/2

)
. The results are provided in

Table 3. When S = E = ∅, partitioning the state space decreases the memory requirement
up to 85.58% (for n = 120).

4.3 Computational gain of Kanet’s theorems

Since Kanet’s theorems extend Emmons’ results, the former will be at least as effective as
the latter in tightening the precedence constraints. We compare the performance of the
DP for the standard dataset with three settings: (1) when none of the dominance rules are
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n OS1
Kanet Emmons None

OS2 # CPU OS2 # CPU # CPU

40

0.8 0.91 125 0.00 0.90 125 0.00 125 0.00

0.6 0.78 125 0.00 0.77 125 0.00 125 0.00

0.4 0.63 125 0.01 0.62 125 0.01 125 0.09

0.2 0.48 125 0.26 0.46 125 0.28 125 7.77

0 0.65 125 0.35 0.60 125 0.50 0 -

60

0.8 0.90 125 0.00 0.89 125 0.00 125 0.00

0.6 0.77 125 0.01 0.76 125 0.01 125 0.08

0.4 0.61 125 0.46 0.60 125 0.51 125 10.82

0.2 0.45 125 90.36 0.44 125 96.64 80 3,654.03

0 0.63 125 59.13 0.61 125 78.04 0 -

80

0.8 0.90 125 0.00 0.89 125 0.00 125 0.00

0.6 0.76 125 0.08 0.75 125 0.10 125 1.33

0.4 0.60 125 44.00 0.59 125 48.52 123 735.57

0.2 0.43 37 469.77 0.43 36 412.28 0 -

0 0.63 98 225.63 0.61 97 234.97 0 -

100

0.8 0.89 125 0.00 0.89 125 0.00 125 0.03

0.6 0.75 125 1.09 0.75 125 1.42 125 23.18

0.4 0.59 112 970.52 0.59 111 894.18 0 -

0.2 0.42 20 332.99 0.41 20 403.56 0 -

0 0.64 72 233.10 0.62 71 256.95 0 -

Table 4: Computational gain of precedence theorems

applied, (2) when Emmons’ conditions are used for pre-processing and (3) after employing
Kanet’s theorems. Table 4 presents the results, where the average OS2 is calculated over
all instances of each setting (125), while the average CPU is computed over the solved
instances (#). Not surprisingly, increasing the density of the precedence graphs via the
dominance rules significantly improves the performance of the DP. The improvement of
Kanet’s theorems over Emmons’ theorems, on the other hand, is less significant. With these
observations, we address Kanet’s concluding suggestion in his 2007 article to conduct a
full-scale computational study to test the utility of his theorems.

4.4 Comparing algorithms

Tables 5 and 6 compares the performance of our DP algorithm with the state-of-the-art
algorithm proposed by Tanaka and Sato (2013) (denoted by Tan in the tables). We apply
Kanet’s theorems to each instance before solving it via DP. For Tan, on the other hand,
we have observed that tightening the precedence graphs consistently increases the CPU re-
quirements, and we therefore apply Tan to the instances with the original (untightened)
precedence graph. As before, CPU is the average runtime of the instances solved to optimal-
ity, and # denotes the number of solved instances (out of 125). For each setting, the best
algorithm is indicated in bold, where the best performance is decided first based on # and
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n OS1 OS2
DP Tan

n OS1 OS2
DP Tan

# CPU # CPU # CPU # CPU

20

0.8 0.94 125 0.00 125 0.05

80

0.8 0.9 125 0.00 125 8.26

0.6 0.82 125 0.00 125 0.03 0.6 0.76 125 0.08 125 142.31

0.4 0.68 125 0.00 125 0.06 0.4 0.6 125 44.00 83 1,014.55

0.2 0.54 125 0.00 125 0.09 0.2 0.43 37 469.77 51 770.89

0 0.68 125 0.00 125 0.02 0 0.63 98 225.63 125 1.10

40

0.8 0.91 125 0.00 125 0.17

100

0.8 0.89 125 0.00 125 22.81

0.6 0.78 125 0.00 125 2.20 0.6 0.75 125 1.09 118 1,005.92

0.4 0.63 125 0.01 125 7.37 0.4 0.59 112 970.52 25 835.34

0.2 0.48 125 0.26 125 10.93 0.2 0.42 20 332.99 23 299.45

0 0.65 125 0.35 125 0.15 0 0.64 72 233.10 125 2.85

60

0.8 0.9 125 0.00 125 2.28

120

0.8 0.89 125 0.01 125 70.08

0.6 0.77 125 0.01 125 18.57 0.6 0.75 125 14.13 44 1,272.65

0.4 0.61 125 0.46 125 116.21 0.4 0.59 33 713.29 15 665.01

0.2 0.45 125 90.36 120 360.75 0.2 0.41 11 658.58 17 583.52

0 0.63 125 59.13 125 0.47 0 0.62 56 418.16 125 5.98

Table 5: CPU times – standard dataset

then on CPU. In search for a second benchmark algorithm, we have also tested the use of
ILOG CP Optimizer 12.8 (after tightening the networks with the precedence theorems), but
this led to results that were consistently (far) inferior to DP and Tan, and so the results are
not reported.

Table 5 shows that our DP outperforms Tan in most of the settings for the standard
dataset. Our algorithm is superior in all instances with n = 20, in all instances with OS1> 0
when 40 ≤ n ≤ 80 and in the instances with medium to high density (0.4 ≤ OS ≤ 0.8) when
n ≥ 80. This is reasonable, since Tan is an extension of the algorithm of Tanaka et al. (2009)
for the scheduling problem without precedence constraints and hence, can be expected to
perform well especially for low OS. In total, our DP outperforms Tan in 22 out of the 30
settings. Note that in some settings, our DP is faster than Tan by orders of magnitude.
When n = 100 and OS = 0.6, for instance, our DP is at least 922 times faster than Tan. In
all the instances that our DP cannot solve, the algorithm is interrupted due to insufficient
memory; in other words, memory is the main bottleneck of our algorithm. For the unsolved
instances of Tanaka and Sato’s algorithm, either memory or CPU limits are reached first,
depending on the instance.

Table 6 compares our DP and Tan on the Tanaka dataset. As discussed in Section 4.1,
most of Tanaka’s instances have very low network densities, where Tan performs better.
Hence, this dataset is not a suitable choice for a fair comparison between the two algorithms.
Nevertheless, for the instances with medium to high density, our DP outperforms Tan both
on CPU time and in number of solved instances. In the setting with n = 100 and ρ = 0.1, for
instance, our DP is on average at least 557 times faster than Tan. Again, for all the instances
that our DP cannot solve, the memory limit is reached, while both memory and time limits
were attained for the instances that were not solved by Tanaka and Sato’s algorithm.
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5 Conclusions

In this article, we have extended Emmons (1969) and Kanet (2007) results for 1||
∑
wjTj to

allow for precedence constraints. We have also developed an efficient memory management
technique for the DP algorithm of Schrage and Baker (1978). Combining these contributions,
we have proposed an exact method for solving 1|prec|

∑
wjTj. We have empirically shown

that our method outperforms the state-of-the-art algorithm of Tanaka and Sato (2013) for
instances with medium to high density. Thus, our DP complements Tanaka and Sato’s
algorithm, which performs better for instances without precedence constraints or with very
low network density. Finally, we have also addressed Kanet’s concluding suggestion in
his 2007 article to conduct a full-scale computational study to test the utility of his theorems.

Appendix

Kanet’s Conditions K1-K7 follow. For a dominant S and a pair (i, j) ∈ N ×N :

K1. pi ≤ pj and wi ≥ wj and (di ≤ max{dj, (wi−wj)(P (BS
i ∪BS

j ) + pi + pj)/wi +wjdj/wi}
or di ≤ (wi − wj)(P (BS

i ∪BS
j ) + pi + pj)/wi + wj(P (BS

j ) + pj)/wi).

K2. pi ≤ pj and wi < wj and dj ≥ (wj − wi)P (ĀS
i )/wj + widi/wj and dj ≥ (wj −

wi)P (ĀS
i )/wj + wi(P (ĀS

i ∩ ĀS
j )− pj)/wj.

K3. pi ≤ pj and wi < wj and di ≤ (wi − wj)P (ĀS
i )/wi + wj(P (BS

j ) + pj)/wi and pi ≤
(wi − wj)(P (ĀS

i )− P (BS
j ))/wi + wjpj/wi.

K4. wi ≥ wj and dj ≥ min{di, (wj − wi)(P (BS
i ∪ BS

j ) + pi + pj)/wj + widi/wj and dj ≥
P (ĀS

i )− wipj/wj.

K5. wi ≥ wj and di ≤ (wi − wj)(P (BS
i ∪ BS

j ) + pi + pj)/wi + wj(P (BS
j ) + pj)/wi and

pj ≥ wj(P (ĀS
i )− P (BS

j )− pj)/wi.

K6. wi < wj and dj ≥ (wj − wi)P (ĀS
i )/wj + widi/wj and dj ≥ P (ĀS

i )− wipj/wj.

K7. dj ≥ P (ĀS
i ).
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