
doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

Sequential testing of n-out-of-n systems:

Precedence theorems and exact methods

Salim Rostami
Stefan Creemers

Wenchao Wei
Roel Leus

Abstract - The goal of sequential testing is to discover the state of a system
by testing its components one by one. We consider n-out-of-n systems, which
function only if all n components work. The testing continues until the system
state (up or down) is identified. The tests have known execution costs and
failure probabilities, and are subject to precedence constraints. The objective
is to find a sequence of tests that minimizes the total expected cost of the
diagnosis. We show how to strengthen the precedence graph without losing
all optimal solutions. We examine different formulations for the problem, and
propose a dynamic-programming (DP) and a branch-and-price algorithm. Our
computational results show that our DP noticeably outperforms the state of
the art. Using a novel memory management technique, it significantly increases
the size of the instances that can be solved to optimality within given limits on
runtime and memory.

Keywords - sequential testing, n-out-of-n systems, precedence theorems, dy-
namic programming, branch-and-price

1 Introduction and related work

A multi-component machine, e.g., a missile radar set, that is inactive except during a state
of military alert, undergoes periodic checkups. The state of the machine (working or failing)
depends on the state of its components. The components need to be tested in a specific
order to detect the state of the machine with minimum cost or time. With these challenges
in mind for preventive and corrective maintenance, the importance of sequential testing was
highlighted by the U.S. Air Force more than sixty years ago Johnson [1956]. The goal of
sequential testing is to discover the state of a system by testing its components one by one.
The testing continues until the system state is identified. Each test has a cost and a success
probability. The objective is to find a sequence of tests that minimizes the total expected
cost of the diagnosis.

As equipment becomes more complex and expensive, the number of required tests and the
inspection costs increase, and consequently, the sequential diagnosis becomes more costly.
From another perspective, as automated robotic machines replace human mechanics and
quality control operators, it becomes vital to be able to prescribe a desirable sequence of
inspections for machines Johnson [1956]. In many practical applications, including rapid

1

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

diagnosis in time-critical situations, e.g., toxic chemical identification Bellala et al. [2012],
R&D project scheduling Creemers et al. [2015], De Reyck and Leus [2008], quality control
of manufactured products Duffuaa and Raouf [1990], container inspection operations at bor-
ders Madigan et al. [2011], and so on, the underlying problem incorporates sequential testing.
Different tests may require different resources (e.g., manpower, electricity, etc.), or may en-
tail other costs (e.g., pain to a patient). Therefore, examiners may try to postpone the more
costly tests. Moreover, the tests are subject to precedence constraints. In pharmaceutical
drug testing, for instance, animal (preclinical) tests precede human (clinical) tests fda.

An n-out-of-n (also n:n or serial) system is up if all its n components are functioning.
Hence, its testing terminates when the first failure is revealed. In a 1:n (parallel) system,
on the other hand, a single working component guarantees the functionality of the whole
system. From an optimization perspective, serial and parallel systems are equivalent: an
optimal solution to a 1:n system with success probabilities pi is also optimal to an n:n
system with success probabilites 1 − pi Ünlüyurt [2004]. A k:n system is up if at least k
tests are successful, and is down if (n− k+ 1) tests fail. Sequential testing of k:n systems is
studied by Wei et al. [2013]. The state of a modular system, where each module represents a
multi-part component, is up if all its modules are functional. A module is working if at least
one of its parts functions. The modules and the tests within each module are precedence-
related. Coolen et al. [2014] and Creemers et al. [2015] consider modular systems in project
scheduling.

Various exact approaches have been proposed for special cases of sequential testing. It
is shown that serial and parallel systems without precedence constraints are polynomially
solvable Johnson [1956], Gluss [1959], Mitten [1960], Boothroyd [1960], Butterworth [1972].
A polynomial algorithm also exists for k:n systems with arbitrary k, and without precedence
constraints Salloum [1979], Ben-Dov [1981], Chang et al. [1990], Salloum and Breuer [1997],
Boros and Ünlüyurt [1999]. Serial systems are polynomially solvable when the precedence
graph is a forest Garey [1973] or series-parallel Monma and Sidney [1979]. An optimal
diagnosis procedure is provided in Chiu et al. [1999] for k:n systems with parallel-chain
precedence constraints. Wagner and Davis [2001] propose an integer-linear formulation for a
single-item discrete sequential search problem, which is in fact a serial system known to be
down. For an extensive literature review on sequential testing we refer to Ünlüyurt [2004].
More recently, Daldal et al. [2016] have offered approximation algorithms for sequential
batch-testing of serial systems.

The subject of this article is sequential testing of n:n systems with a general precedence
graph, which is known to be strongly NP-hard Kelly [1982]. To the best of our knowledge,
no research has been specifically devoted to developing exact algorithms for this problem.
The main contributions of this work are the following. (1) We show how to strengthen
the precedence graph in a pre-processing step. (2) We develop a linear formulation for the
problem obtained via Dantzig-Wolfe decomposition Martin [2012] of a compact nonlinear
formulation. (3) A dynamic-programming (DP) and a branch-and-price (B&P) algorithm
are devised as solution methods. The computational results indicate that the DP procedure
is faster than B&P. Compared to the existing algorithms, our method significantly increases
(by up to 100%) the size of the instances that can be solved to optimality within given limits
on runtime and memory. (4) In the process, we show that a relaxation of the pricing problem
of our B&P can be solved in polynomial time. We use this result to solve the pricing problem

2

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

1

0.9

5

2

0.5

8

3

0.9

40

4

0.1

1

i

pi

ci

Figure 1: A problem instance

more efficiently.
Below, we first formally define the problem in Section 2. Section 3 is devoted to three

precedence theorems for strengthening the precedence graph. We propose a DP and a B&P
algorithm in Sections 4 and 5, respectively. Computational results are provided in Section 6.
We conclude in Section 7.

2 Problem statement

We consider a set N of n tests (or inspections) with pre-specified testing costs ci ≥ 0,
i ∈ N , and success probabilities pi ∈ [0, 1]. The set E is a partial order on N , representing
the precedence constraints. The precedence network of an instance of the problem can be
visualized using an acyclic directed graph G(N,E), where the nodes represent the tests,
and there is an arc from node i to j iff (i, j) ∈ E. A test can be performed only if all its
predecessors are done, where j ∈ N is said to be a predecessor of i ∈ N if (j, i) ∈ E. In a
sequential diagnosis, tests are performed one at a time until the correct state of the system
is identified. The system is functioning when all the n tests are successful, and it is known
to be down when the first failure is revealed.

A solution to the sequential testing problem is a decision policy that decides which test
should be started next, given a history of previously performed tests and their results. For
serial and parallel systems, there is a full order (sequence) of tests that is optimal Wei
et al. [2013]. This does not necessarily hold for k:n systems. A full order is feasible iff it
extends E. The objective is to find one sequence (list) L = (l1, l2, ..., ln) of the tests that
minimizes the total expected cost of the diagnosis

∑n
j=1(

∏j−1
i=1 pli)clj , where

∏
i pi over an

empty set equals 1.

Example. Consider the instance depicted in Figure 1 with the set N of tests {1, 2, 3, 4}, and
the set of precedence constraints E = {(1, 4)}. The sequence L1 = (1, 2, 3, 4) is a feasible
solution with objective value 1×5+0.9×8+0.45×40+0.405×1 = 30.605, while L∗ = (1, 4, 2, 3)
is an optimal sequence with objective value 8.42.

Following Potts [1980], we describe a compact formulation (CF) based on “linear order-

3

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

ing” variables xij, i, j ∈ N , where xij = 1 if test i precedes test j, and xij = 0 otherwise.

(CF) min
n∑
j=1

cj

n∏
i=1

[(pi − 1)xij + 1] (1)

s.t. xij + xji = 1 ∀{i, j} ⊂ N (2)

xji + xik − xjk ≤ 1 ∀{i, j, k} ⊂ N (3)

xij = 1 ∀(i, j) ∈ E (4)

xij ∈ {0, 1} ∀i, j ∈ N (5)

Constraint (2) imposes anti-symmetry. Wagner and Davis [2001] show that Constraint (3)
is sufficient to enforce the transitivity property, and to eliminate cycles of any size. Con-
straint (4) enforces the precedence constraints in E.

Although correct, formulation CF is not practical due to its nonlinear objective. Fol-
lowing, we employ Dantzig-Wolfe decomposition (DW) Martin [2012] to linearize CF. DW
as applied to integer programs entails a reformulation to express the integral solutions of
a bounded convex polyhedron as integer convex combination of a finite set of points. The
reformulation gives rise to another integer problem that typically has a tighter linear pro-
gramming relaxation because it amounts to implicitly describing the convex hull of the
integer polyhedron Vanderbeck [2000].

For any i ∈ N , let Γi = {xmi ∈ {0, 1}n | xmji = 1,∀(j, i) ∈ E} be the set of ρi points
xmi = {xm1i, xm2i, . . . , xmni} that satisfy (4) and (5). Every xmi corresponds to a set Cm

i ⊂ N of
candidate predecessors of test i, where j ∈ Cm

i iff xmji = 1. Intuitively, Cm
i is feasible iff for

any (j, i) ∈ E : j ∈ Cm
i , for any (i, k) ∈ E : k /∈ Cm

i , and i /∈ Cm
i . We define Pm

i =
∏

j∈Cm
i
pj

as the joint success probability of Cm
i .

Example (continued). Considering the previous example, for test 4, there are four different
subsets, namely C1

4 = {1}, C2
4 = {1, 2}, C3

4 = {1, 3}, and C4
4 = {1, 2, 3}. The corresponding

joint probabilities are P 1
4 = 0.9, P 2

4 = 0.45, P 3
4 = 0.81, and P 4

4 = 0.41. We observe that
Cm
i = ∅ can also occur; for test 1, for instance, we have C1

1 = ∅ with P 1
1 = 1.

Constraints (4) and (5) can be dropped from CF if we restrict the solution space to the
sets Γi, i.e., if we impose

∀i ∈ N : xi =

ρi∑
m=1

zmi x
m
i , with

ρi∑
m=1

zmi = 1 and zmi ∈ {0, 1},

where the decision variable zmi is 1 if the tests in Cm
i precede i, and 0 otherwise. Using this

transformation, and by replacing
∏n

i=1[(pi− 1)xmji + 1] by Pm
i in the thus-obtained objective

4

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

1

0.9

5

2

0.5

8

3

0.9

40

4

0.1

1

i

pi

ci

(a)

1

2 3

4

(b)

1

2 3

4

(c)

Figure 2: Possible extensions of the network in Figure 1

function, we reach the following integer linear formulation (ILF).

(ILF) min
n∑
i=1

ci

ρi∑
m=1

Pm
i z

m
i (6)

s.t.

ρj∑
m=1

zmj x
m
ij +

ρi∑
m=1

zmi x
m
ji = 1 ∀{i, j} ⊂ N (7)

ρj∑
m=1

zmi x
m
ji +

ρk∑
m=1

zmk x
m
ik −

ρk∑
m=1

zmk x
m
jk ≤ 1 ∀{i, j, k} ∈ N (8)

ρi∑
m=1

zmi = 1 ∀i ∈ N (9)

zmi ∈ {0, 1} ∀i ∈ N, m ∈ {1, . . . , ρi} (10)

The linear objective function of ILF comes at the cost of a high number of variables zmi
(exponential in n). To overcome this difficulty, in Section 5, we propose an exact algorithm
based on column generation for solving ILF.

3 Precedence theorems

A precedence constraint (i, j) ∈ N × N is said to be dominant iff there is at least one
optimal solution with i before j. Given an instance G(N,E), let D be the set of all dominant
constraints. Precedence theorems may help us identify some of the constraints in D. Note
that since every feasible solution satisfies the constraints in E, we have E ⊆ D.

We know that when E = ∅, a sequence L = (l1, l2, . . . , ln) is optimal Ünlüyurt [2004] if

cl1
1− pl1

≤ cl2
1− pl2

≤ · · · ≤ cln
1− pln

. (11)

The condition is intuitive: for a series system, it is advantageous to perform tests with low
cost and high failure probability first. If ci/(1 − pi) ≤ cj/(1 − pj), then if j precedes i in a
given sequence, we can swap the two tests, and the thus-obtained sequence cannot have a
higher objective value than the initial sequence. We say the second sequence dominates the
original.

5

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

Example (continued). For the previous example, we have c1
1−p1 = 50, c2

1−p2 = 16, c3
1−p3 = 400,

and c4
1−p4 = 1.11. Since c4

1−p4 <
c2

1−p2 <
c1

1−p1 <
c3

1−p3 , if we ignore the precedence constraints in

E, then the sequence (4,2,1,3) is optimal, with associated expected cost 3.85. This sequence
violates the precedence constraint (1, 4) ∈ E, however. In Figure 2a, although c4

1−p4 <
c2

1−p2 ,

since (1, 4) ∈ E (the solid edge), addition of the constraint (4, 2) (the dashed edge) implies
the transitive constraint (1, 2) (the dotted edge), while c2

1−p2 < c1
1−p1 . Moreover, Figure 2b

shows that although c2
1−p2 <

c1
1−p1 , adding the constraint (2, 1) also gives rise to the transitive

constraint (2, 4), whereas c4
1−p4 <

c2
1−p2 . Therefore, neither (4, 2) nor (2, 1) can be confirmed

to be dominant. For (4, 3) in Figure 2c, on the other hand, we have c4
1−p4 < c3

1−p3 and
c1

1−p1 < c3
1−p3 . Consequently, the pair (4, 3) and the implied transitive edge (1, 3) are both

dominant.

The previous example suggest an immediate extension of this rule for general E: if
for an activity pair (i, j) we have ci

1−pi <
cj

1−pj , and each of its transitive constraints from

E also satisfies the rule, then (i, j) is dominant. Let Bi = {j ∈ N | (j, i) ∈ E} and
Ai = {j ∈ N | (i, j) ∈ E} be the sets of tests that according to E should be done before and
after test i, respectively. For any {i, j} ⊂ N with (i, j), (j, i) /∈ E, we prove the following
three theorems. Remark that for such a pair, G(N,E ∪ {(i, j)}) is acyclic.

Theorem 1. If for any k ∈ {i}∪Bi\Bj and q ∈ {j}∪Aj\Ai we have ck/(1−pk) ≤ cq/(1−pq),
then (i, j) ∈ D.

Proof. We need to show that not only (i, j) but also the associated transitive constraints
are dominant. Consider the set {(k, q) | k ∈ Bi, q ∈ Aj} of the pairs that are related to
(i, j). For general E, and for any k ∈ Bi ∩ Bj and q ∈ Ai ∩ Aj, the pair (k, q) ∈ E, and
consequently, is respected by every feasible solution. Therefore, we only need to check the
condition ck/(1 − pk) ≤ cq/(1 − pq) for any k ∈ {i} ∪ Bi \ Bj and q ∈ {j} ∪ Aj \ Ai. If the
condition holds for every such pair, then the pair (i, j) and its corresponding transitive pairs
are dominant.

In the previous example, we saw that although c4
1−p4 <

c2
1−p2 , constraint (4, 2) could not

be identified as dominant because it also implies (1, 2), and c2
1−p2 < c1

1−p1 . Yet, it may be

that the ratio c4
1−p4 is low enough that despite c2

1−p2 <
c1

1−p1 , (4, 2) is still dominant. To derive
precedence theorems that can identify such cases we use the so-called “swap” and “insert-
after” strategies Kanet [2007], Rostami et al. [2017] to obtain two more precedence theorems.
Given a feasible sequence with j before i, and (j, i) /∈ E, swapping the two jobs, or inserting j
after i (together with the corresponding transitive changes), might lead to an improvement in
the objective. The two strategies aim to find closed-form conditions to identify circumstances
where such improvements are guaranteed. An illustration of these strategies for general E
is provided in Figure 3, where βi = (M ∩ Bi), αj = (M ∩ Aj), γij = M \ (αj ∪ βi) and
εj = M \ αj, with M the set of intermediate tests between i and j. “From” represents any
feasible sequence, and “To” is the resulting sequence after swapping j and i, or inserting j
after i. Following the Swap strategy, a sufficient condition for the dominance of (i, j) has
the structure

LB(OI(j)) ≥ UB(OD(i)) + UB(OD(γij)) + UB(OD(βi)), (12)

6

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

From: M0 j M i

To: M0 βi i γij j αj

(a) Swap

From: M0 j M i

To: M0 εj i j αj

(b) Insert-after

Figure 3: Swap and insert-after strategies when E 6= ∅

where LB(·) and UB(·) are lower and upper bound functions. For any X ⊆ N , we define
OI(X) =

∑
l∈X max{0, cl

∏
k≺Tol

pk − cl
∏

k≺Froml
pk} as the objective improvement of the

tests in X after the changes, and OD(X) =
∑

l∈X max{0, cl
∏

k≺Froml
pk − cl

∏
k≺Tol

pk} as
their objective degradation, where i ≺L j indicates that i precedes j in L. For simplicity of
notation, we use OI(k) instead of OI({k}) for all singleton sets X = {k}, with k ∈ N . Note
that UB(OD(αi)) and LB(OI(αi)) are set to 0. A variant of Condition (12) can be used for
the insert-after strategy by replacing UB(OD(γij)) + UB(OD(βi)) by UB(OD(εj)).

If a pair (i, j) of tests satisfies Condition (12) for every feasible M , and if G(N,E∪{(i, j)})
is acyclic, then if j precedes i in a given schedule, we can exchange the two tests without
increasing the cost. Thus, for a set of test pairs {(i, j), (k, q), . . . } that each satisfy one
or both of the swap and insert-after dominance conditions, any optimal schedule that is
not compatible with one or more of these pairs cannot be deteriorated by making as many
interchanges as necessary to obtain an optimal schedule that respects all the pairs. Let
S ⊆ D with S ⊇ E be the set of dominant precedence constraints that are previously
identified. Starting from S = E, we iteratively identify dominant precedence constraints,
which are then added to S. The iterative extension of S stops only when we can no longer
identify new dominant constraints. We conclude:

Proposition 1. There is at least one optimal solution that respects all the precedence con-
straints in S iff the graph G(N,S) is acyclic.

Similar to Bi and Ai, we define BS
i and ASi based on S instead of E. Moreover, for any

X ⊆ N , we define P (X) =
∏

i∈X pi, and CF[X] is the subproblem, where N and E in CF
are replaced by X and {(i, j) ∈ E | i, j ∈ X}, respectively. Finally, λ(BS

i), θ(γij), and φ(εj)
are upper bounds to the subproblems CF[BS

i], maxγij⊆N\({j}∪BS
j ∪AS

j ∪{i}∪BS
i ∪AS

i){CF[γij]}, and

maxεj⊇BS
i \BS

j ,εj⊆N\({j}∪BS
j ∪AS

j ∪{i}∪AS
i){CF[εj]}, respectively, where γij and εj are precedence-

feasible subsets of tests.

Theorem 2. If

cj(1− pi)P (N \ ({j} ∪ ASj ∪ {i} ∪ ASi)) ≥
(ciP (BS

j ∪BS
i) + P (BS

j)λ(BS
i))(1− pjP [N \ ({j} ∪BS

j ∪ {i} ∪BS
i ∪ ASi)]) (13)

+ P (BS
j ∪BS

i)θ(γij) max{0, pi − pjP (ASj)},

then (i, j) ∈ D.

7

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

Proof. For Condition (12) for the swap strategy we have

OI(j) = max{0, P (M0)cj − P (M0)P (βi)piP (γij)cj}
= P (M0)cj(1− piP (βi)P (γij))

≥ cj(1− pi)P [N \ ({j} ∪ ASj ∪ {i} ∪ ASi)],

where M0 is the set of tests that precede j in From sequence in Figure 3a.

OD(i) = max{0, P (M0)P (βi)ci − P (M0)pjP (M)ci}
= ciP (M0)P (βi)(1− pjP (M \ βi))
≤ ciP (BS

j ∪BS
i)(1− pjP [N \ ({j} ∪BS

j ∪ {i} ∪BS
i ∪ ASi)]).

OD(βi) ≤ max{0, P (M0)λ(βi)− P (M0)pjP (M \ βi)λ(βi)}
= P (M0)λ(βi)(1− pjP (M \ βi))
≤ P (BS

j)λ(BS
i)(1− pjP [N \ ({j} ∪BS

j ∪ {i} ∪BS
i ∪ ASi)]).

OD(γij) ≤ max{0, P (M0)P (βi)piθ(γij)− P (M0)pjP (αj)P (βi)θ(γij)}
= P (M0)P (βi)θ(γij) max{0, pi − pjP (αj)}
≤ P (BS

j ∪BS
i)θ(γij) max{0, pi − pjP (ASj)}.

By substituting the expressions above in (12), we have (13).

Theorem 3. If

cj(1− pi)P (N \ ({j} ∪ ASj ∪ {i} ∪ ASi)) ≥ (14)

(ciP (BS
j ∪BS

i) + P (BS
j)φ(εj))(1− pjP (ASj)),

then (i, j) ∈ D.

Proof. For Condition (12) for the insert-after strategy we have

OI(j) ≥ cj(1− pi)P [N \ ({j} ∪ ASj ∪ {i} ∪ ASi)].

OD(i) = max{0, P (M0)P (εj)ci − P (M0)pjP (M)ci}
= ciP (M0)P (εj)(1− pjP (αj))

≤ ciP (BS
j ∪BS

i)(1− pjP (ASj)).

OD(εj) ≤ max{0, P (M0)φ(M \ αj)− P (M0)pjP (αj)φ(εj)}
= P (M0)φ(εj)(1− pjP (αj))

≤ P (BS
j)φ(εj)(1− pjP (ASj)).

By substituting the expressions above in (12) we have (14).

There is an obvious trade-off between the quality of the bounds λ(BS
i), θ(γij) and φ(εj),

and the time complexity of their computation. Here, we opt for obtaining these bounds in
polynomial time. We obtain λ(BS

i) by ordering the tests in non-decreasing order of ci/(1−pi)
while respecting the precedence constraints. That is, starting from the first position of an
empty list, we fill the n positions, iteratively. At each of the n decision points, we choose the
eligible test with lowest ci/(1− pi). For θ(γij) and φ(εj), one straightforward approach is to
order the tests in non-increasing order of ci/(1− pi), ignoring the precedence constraints.

8

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

Example (continued). For the previous example, we obtain (2, 1, 4, 3) for λ(N) with the
objective value 12.75. As an upper bound to maxX⊆N{CF[X]} (as for θ and φ bounds), on
the other hand, we obtain (3, 1, 2, 4) with the objective value 51.385. For this example, we can
show that Theorems 1 and 3 identify (1, 3), (2, 3), and (4, 3) as dominant, while Theorem 2
identifies (4, 2) and (4, 3). The identified constraints are respected by the optimal solution
L∗ = (1, 4, 2, 3). Note that Theorem 2 identifies (4, 2) as dominant, despite the fact that for
its transitive constraint (1, 2), we have c2

1−p2 <
c1

1−p1 .

In the remainder, we assume that the input precedence networks have been tightened
using the precedence theorems, but we maintain the notation E instead of S for the set of
precedence constraints. We also assume that the test indices form a topological order of
G(N,E).

4 DP algorithm

In this section, we propose a DP algorithm for solving the sequential testing problem for n:n
systems. In the remainder of the text, we will refer to this algorithm as DPn. The recursion
of DPn (Section 4.1) is close to the recursion in Coolen et al. [2014], Wei et al. [2013], but
tuned specifically towards the n:n problem. We use an improved version of the memory
management technique in Rostami et al. [2017] (Section 4.2). This technique enables us
to solve significantly larger instances (by up to 100%) than before within given limits on
runtime and memory.

4.1 DP recursion

Each state is defined as a set Y ⊆ N of to-be-scheduled tests. Every state Y represents a
sequential testing subproblem, where the first n − |Y | positions of the sequence are filled,
and we decide the test that occupies the (n−|Y |+ 1)th position. The state space Φ contains
all the feasible states. A state Y is feasible if it respects the precedence constraints, i.e.,
∀i ∈ Y : Ai ⊂ Y . Given a state Y ∈ Φ, let ξ(Y) = {i ∈ Y | Bi ∩ Y = ∅} be the set of tests
that are eligible to be tested. Hence, ξ(Y) contains all the possible decisions to be made
in Y . Selecting test i ∈ ξ(Y) leads to Y \ {i} as the immediate succeeding state. The value
function of any state Y can be computed via the backward recursion

G(Y) = min
i∈ξ(Y)

{ci + piG(Y \ {i})}. (15)

Starting from the unique final state Y = ∅ with G(∅) = 0, DPn iteratively calculates the
objective value corresponding to the preceding states.

Example (continued). Figure 4 depicts the state space of the previous example. The objective
value of Y9 is c4 + p4 ×G(∅) = 1, while G(Y2) = min{c2 + p2 ×G(Y5), c3 + p3 ×G(Y6), c4 +
p4 ×G(Y8)} = 3.8. Finally, G(Y1) = 8.42 is the optimal objective value; the unique optimal
solution is L∗ = (1, 4, 2, 3).

9

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

Y12 = ∅Y10 = {3}

Y9 = {4}

Y11 = {2}

Y5 = {3, 4}

Y6 = {2, 4}

Y7 = {1, 4}

Y8 = {2, 3}

Y2 = {2, 3, 4}

Y3 = {1, 3, 4}

Y4 = {1, 2, 4}

Y1 = {1, 2, 3, 4}

Figure 4: The state space of the example in Figure 1

4.2 DP memory management

In this section we elaborate an improved version of the memory management technique that
is proposed in Rostami et al. [2017] for precedence-constrained single machine scheduling
with weighted tardiness objective. The method partitions the state space into sets of states
with equal cardinality, i.e., it divides Φ into sets Υf = {Y ∈ Φ : |Y | = f}, with 0 ≤ f ≤ n.
In Figure 4, each Υf corresponds to one “column” of states, e.g., Υ2 = {Y5, Y6, Y7, Y8}. For a
given Y ∈ Φ, let Q(Y) = {i ∈ N \Y | Ai ⊆ Y } be the set of tests in N \Y with all successors
in Y . Hence, for any i ∈ Q(Y), Y ∪ {i} is a feasible state. For a given f (0 < f ≤ n) we
have

Υf =
⋃

Y ∈Υf−1

{Y ∪ {i} | i ∈ Q(Y)}, (16)

and Υ0 = {∅}. Therefore, the generation of Υf depends only on Υf−1. Moreover, according
to (15), for any state Y ∈ Υf the objective value G(Y) is determined by the objective value
of states in Υf−1. We conclude that, once Υf is created, and the objective value of its
members is computed, the set Υf−1 can be discarded from memory. This means that at any
time during the execution of DP, we need to store at most two sets of states (Υf−1 and Υf).

One drawback of the method of Rostami et al. [2017] is that for each newly generated
state, it has to be checked if the state has been generated before. If a state already exists in
the set of generated states, then we only need to update its objective value. In this article
we propose an improved version of the technique that does not require the aforementioned
checks, and is consequently faster.

Algorithm 1 elaborates a subroutine that receives Υf−1, and generates Υf , where Q(Y)[i]
is the ith element in Q(Y), Υf

i is the ith element of Υf , and u is a counter of the states in
Υf that are previously generated. With each state Y , we associate τ(Y) =

∑
i∈Y 2i−1 as its

binary representation. The elements of the resulting Υf are generated in decreasing order
of their binary representation if the states in Υf−1 are processed in decreasing binary order,
and for each state Y ∈ Υf−1, the tests in Q(Y) are scanned in decreasing index order.

Example (continued). In Figure 4, and for Υ2, the states are in decreasing binary order:
Υ2

1 = Y5, Υ2
2 = Y6, Υ2

3 = Y7, and Υ2
4 = Y8 with τ(Y5) = 12, τ(Y6) = 10, τ(Y7) = 9,

10

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

Algorithm 1 Υf generation subroutine

Input: Υf−1 in decreasing binary order and ∀Y ∈ Υf−1 : Q(Y) in decreasing index order
Output: Υf in decreasing binary order
a = u = 0
for i = 1 to |Υf−1| do

if i==1 then
q = 1

else
q = min{j ∈ N |Q(Υf−1

i)[j] < max{i ∈ Υf−1
a \Υf−1

i }}
end if
for j = q to |Q(Υf−1

i)| do
u = u+ 1
Υf

u = Υf−1
i ∪Q(Υf−1

i)[j]
a = i

end for
end for
return Υf

and τ(Y8) = 6. The states that are generated from Y5, are in decreasing binary order if
we scan the tests in Q(Y5) = {1, 2} in decreasing index order, meaning Q(Y5)[1] = 2 and
Q(Y5)[2] = 1. In this case, Y2 = Y5∪{2} with τ(Y2) = 14, and Y3 = Y5∪{1} with τ(Y3) = 13.

Suppose the states Υf
u−1 and Υf

u are generated from the states Υf−1
a and Υf−1

b (a < b),

respectively. We define h = max{i ∈ Υf−1
a \Υf−1

b }.

Theorem 4. In Algorithm 1, the state Υf−1
b ∪ {i} with i ∈ Q(Υf−1

b) has already been gen-
erated iff i ≥ h.

Proof. We define g = min{i ∈ Y f−1
b }. It can be shown that h > g. Assume that Υf

u is

produced by adding Q(Υf−1
b)[q] to Υf−1

b , and that Q(Υf−1
b)[q] ≥ h. Since the test indices

form a topological order of G(N,E), we know that Bg ∩ Υf−1
b = ∅ and g /∈ AQ(Υf−1

b)[q].

Consequently, Y ∗ = Υf−1
b \ {g} ∪ {Q(Υf−1

b)[q]} is a feasible state with cardinality f − 1.

Since τ(Y ∗) > τ(Υf−1
b), there exists c ≤ a such that the state Υf−1

c = Y ∗. Knowing that
Y ′ = Y ∗ ∪ {g}, we conclude that Y ′ has already been generated. On the other hand, if
Q(Υf−1

b)[q] < h, then Υf
u < Υf

u−1, and since the elements in Υf are generated in decreasing
binary order, we conclude that Υf

u has not been generated before.

Example (continued). For the states that are generated from Y6, we have h = max{i ∈
Y5 \ Y6} = 3 and g = min{i ∈ Y6} = 2. Since Q(Y6) = {1, 3}, we conclude that the state
Y6∪{3} is already generated (Y2) from the state Y6 \{2}∪{3} = Y5. The state Y4 = Y6∪{1},
on the other hand, is new.

Wei et al. [2013] use uniformly directed cuts (UDC s) to structure the state space Φ.
Each UDC u ⊆ N is an inclusion-maximal set of incomparable tests, i.e., for any {i, j} ∈
u : (i, j) /∈ E ∧ (j, i) /∈ E. Let U be the set of all UDCs. With each UDC u ∈ U , Wei et al.
associate a set σ(u) ⊂ Φ of states in which one or more tests in u are eligible to start, and
the tests in N \ u are all ineligible or finished. It is shown in Creemers et al. [2010] that the
sets σ(u) are mutually exclusive, and

⋃
u∈U σ(u) = Φ. Hence, U is a valid partition of Φ, and

11

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

allows, at each time during the optimization, to store and process only a subset of Φ, and to
dismiss the states that will no longer be used. The number of UDCs is exponential in n, and
they have to be enumerated prior to optimization. Our method, on the other hand, is not
dependent on UDCs, and combines the generation of the states with the calculation of their
objective value during optimization. In Section 6, we empirically show that our memory
management technique not only reduces the computational effort required to generate and
search the state space, but also reduces the number of states that are stored in memory
simultaneously. In other words, it is not only faster but also more memory-efficient.

5 Column generation

Column generation (CG) Martin [2012] is a technique for solving linear programs with a large
number of variables. The algorithm consists of a master and a pricing problem. Here, the
linear relaxation of ILF, denoted by LF, is the master problem. It is called restricted (RLF)
when it includes only a subset of its variables (columns). RLF is solved iteratively, and at
each iteration, the pricing problem determines whether a new variable exists that if added
to the restricted master problem, will improve its objective value. If no such variable exists
then an optimal solution to the current RLF is also optimal to LF. A heuristic algorithm (see
Section 6.2) is used to obtain the initial columns of RLF.

5.1 The pricing problem

Let β̄ij, κijk, and αi be the dual variables attached to Constraints (7), (8), and (9), respec-
tively. The reduced cost of the variable zmi is then

Pm
i ci − αi −

∑
j∈N\{i}

β̄ijx
m
ji −

∑
j∈N\{i}

∑
k∈N\{i,j}

κijkx
m
ji .

The pricing problem then boils down to the question ∃i,m : Pm
i ci − αi −

∑
j∈Cm

i
βij <

0?, where βij = β̄ij +
∑

k∈N\{i,j} κijk. A new entering variable with negative reduced cost
corresponds to a new set Cm

i . To find such variables, at each iteration, and for every i ∈ N ,
we solve the pricing problem

(PR) min F (Ni, ςi, βi) = ςi
∏
j∈Ni

p
yj
j −

∑
j∈Ni

βijyj (17)

s.t. yj ≥ yk ∀(j, k) ∈ E (18)

yj ∈ {0, 1} ∀j ∈ Ni (19)

where Ni = N \ (Bi ∪ Ai ∪ {i}) is the set of tests that are not precedence-related to i, and
ςi = ci

∏
j∈Bi

pj. The decision variable yj is equal to 1 if j is selected, and 0 otherwise.
For given arguments, the objective value of an optimal solution y∗ is denoted by F (y∗)
or F ∗. If there exists i ∈ N such that F (Ni, ςi, βi; y

∗) < αi +
∑

j∈Bi
βij, then the subset

Cm
i = {j ∈ Ni | y∗j = 1}∪Bi and its corresponding variable zmi should enter RLF; otherwise,

a current optimal solution to RLF is also optimal to LF.

12

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

Y1 = {1, 2, 4}, Z1 = ∅ Y2 = {2, 4}, Z2 = {1}

Y3 = {2}, Z3 = ∅

Y4 = {4}, Z4 = {1, 2}

Y5 = {4}, Z5 = {1}

y1 = 1

y1 = 0

y2 = 1

y2 = 0

Figure 5: The state space of the example

5.1.1 A DP algorithm for solving PR

In this section, we develop a DP algorithm for solving the pricing problem PR. Henceforth,
we refer to this algorithm as DPp. The problem bears similarities with the precedence-
constrained knapsack problem. The main framework of DPp is also inspired by the DP
algorithm of Samphaiboon and Yamada [2000].

For the pricing problem PR[Ni, ςi, βi], a DP state is defined by (Y, Z), where Y ⊆ Ni

is a set of tests that may or may not be selected in the new set of predecessors of i, and
Z ⊆ (Ni∪Bi)\Y with Z ⊇ Bi is the set of tests that are chosen to be in the set of predecessors
of i. Each DP state (Y, Z) represents a subproblem PR[Y, ς, βi], where ς = ci

∏
j∈Z pj. Let Ω

be the set of all feasible states. A state (Y, Z) is called feasible if it respects the precedence
constraints in E, i.e., for each j ∈ Y : Bj ⊂ (Y ∪ Z), and for each j ∈ Z : Bj ⊂ Z.
A state (Y, Z) is called singleton if |Y | = 1. We define δ(Y) = min{j ∈ Y } as the test
with minimum index in Y . Assuming that the test indices form a topological order of
G(N,E), we have Bδ(Y) ∩ Y = ∅. Considering a DP state (Y, Z), fixing yδ(Y) = 1 leads
to (Y \ {δ(Y)}, Z ∪ {δ(Y)}), and the choice yδ(Y) = 0 results in (Y \ ({δ(Y)} ∪ Aδ(Y)), Z).
For a given state (Y, Z), the value function F̄ computes the minimum reduced cost via the
following recursion.

F̄ ∗(Y, Z) = min{F̄ ∗(Y \ {δ(Y)}, Z ∪ {δ(Y)}) +R(Z, Y),

F̄ ∗(Y \ ({δ(Y)} ∪ Aδ(Y)), Z)}, (20)

where R(Y, Z) = ci
∏

j∈Z pj(pδ(Y)−1)−βi,δ(Y) is the reward of selecting δ(Y), and F̄ ∗(∅, Z) =
0. The optimal decision variable for each state (Y, Z) is denoted by y∗(Y, Z).

Example (continued). In the previous example, the pricing problem corresponding to test 3
is denoted by PR[N3, ς3, β3], where N3 = {1, 2, 4}, B3 = ∅, c3 = 40 Let us illustrate the
calculation with β3 = {−10,−20, 0,−20}. Figure 5 presents the hierarchy of Ω. As shown in
the figure, all the terminal nodes are singleton for which the corresponding objective value can
be obtained via (20). With a backward recursion, this value can then be propagated upward in
the tree of supproblems. Using any ordering �Ω satisfying (Y1, Z1) � (Y2, Z2)⇔ |Y1| ≤ |Y2|,
computing F̄ (Y, Z) only depends on previously computed objective values. Table 1 presents
these values for all the states. Based on the table, an optimal solution to this example is
y∗(N3, B3) = (1, 1, 0, 0) with F̄ ∗(N3, B3) = −6.4.

5.1.2 A relaxation of PR

In this section, we show that by solving a relaxation of PR, we can solve the pricing prob-
lem more efficiently. We relax the multiplicative part of the objective (17) by replacing

13

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

State Index R(Y, Z) F ∗(Y, Z) y∗(Y, Z)
5 −12.4 −12.4 1
4 3.8 0 0
3 0 0 0
2 2 −12.4 1
1 6 −6.4 1

Table 1: The calculation details of the example

F (Y, ς, b; y) with F ′(Y, b; y) =
∑

j∈Y (−bj)yj. We denote this relaxation by RPR. Each in-
stance of RPR can be converted into a special case of the maximal closure problem Picard
[1976] by reversing the precedence arcs of its corresponding graph. Picard [1976] shows that
the maximal closure of a graph can be found by solving a maximal flow problem, and hence,
can be solved very efficiently [Ford and Fulkerson, 1962].

Below, we prove that solving RPR to optimality can reduce the size of PR. In order
to employ the set operators, in the following, we use the set representation C ⊂ N of the
solutions to PR (recall Cm

i ⊂ N), rather than their vector representation y. For each i ∈ C
we have yi = 1. We also assume that F (C) ≡ F (y).

Lemma 1. If C1, C2 ⊆ Y are two feasible solutions to PR[Y, ς, b], then (C1 ∪ C2) ⊆ Y is
also a feasible solution to PR[Y, ς, b].

Proof. A solution C ⊆ Y is feasible iff for all j ∈ C : Bj ⊂ C. Moreover, we know that for
any j ∈ C1 ∪C2, j belongs to C1 and/or C2. In either case, for any i ∈ C1 we have Bj ⊂ C1,
and consequently, Bj ⊂ C1 ∪ C2. The same holds for any j ∈ C2. Thus, we conclude that
∀j ∈ C1 ∪ C2 : Bj ⊂ C1 ∪ C2, and consequently, C1 ∪ C2 is a feasible solution.

Similarly, we can prove:

Lemma 2. If C1, C2 ⊆ Y are two feasible solutions to PR[Y, ς, b], then (C1 ∩ C2) ⊆ Y is
also a feasible solution to PR[Y, ς, b].

Using these two lemmas, we prove:

Theorem 5. If C is an optimal solution to RPR[Y, b], then there exists an optimal solution
C∗ to PR[Y, ς, b] such that C ⊆ C∗.

Proof. We define C̄ = C \ C∗. Assuming C̄ 6= ∅ implies that ∃j ∈ C : j /∈ C∗. We then
have F (C∗ ∪ C̄) = ς

∏
j∈(C∗∪C̄) pj −

∑
j∈(C∗∪C̄) bj. Regarding the multiplicative part of the

equation, since ς ≥ 0, we have ς
∏

j∈C∗ pj ≥ ς
∏

j∈(C∗∪C̄) pj. With respect to the additive

part, we consider the two following cases. If
∑

j∈C̄ bj > 0, then based on Lemma 1 and the

fact that C∗ ∪ C̄ = C∗ ∪ C, we have F (C∗ ∪ C̄) < F (C∗), which contradicts the optimality
of C∗ in PR. If

∑
j∈C̄ bj < 0, on the other hand, then considering Lemma 2 and that

C \ C̄ = C∗ ∩ C, we know F ′(C \ C̄) < F ′(C), which contradicts the optimality of C in
RPR. We conclude that C̄ = ∅ and C ⊆ C∗. Remark that C̄ 6= ∅ only if ∀j ∈ C̄ : pj = 1
and

∑
j∈C̄ bj = 0, in which case F (C∗ ∪ C) = F (C∗).

14

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

Therefore, given an optimal solution C to RPR[Y, b] we can replace PR[Y, ς, b] by PR[Y \
C, ς

∏
j∈C pj, b]. Moreover, if F (C) < αi, we can add the corresponding column to RLF

without actually solving PR explicitly. Throughout the implementation of the algorithms,
we use Dinic’s algorithm Dinic [1970] with complexity O(n2|E|) to solve RPR.

5.2 Branch-and-price

The output of the B&P algorithm is an optimal integral solution to ILF. It starts by
obtaining an optimal fractional solution to LF in the root node. Branching on the original
variables xij rather than the pricing variables zmi is known to lead to more balanced search
trees, and to preserve the tractability of the pricing problems Savelsbergh [1997]. Therefore,
at each node, we fix a fractional variable xij to either 0 or 1. This yields two subproblems
with additional constraints that can be solved by CG. The branching decisions should be
imposed to PR, i.e., a variable that is fixed to zero should not be selected as entering variable
in PR. To do so, we modify the precedence network, i.e., for any {i, j} ∈ N , fixing xij = 0
adds (j, i) and its transitive constraints to E. The additional constraints may empty the
solution space of the restricted master problem, in which case new feasible heuristic solutions
(see Section 6.2) are used to add new columns. It should be noted that the performance of a
branch-and-price algorithm may improve if combined with various enhancement techniques.
Using dual stabilization techniques can improve the convergence of CG (Wentges [1997]).
Moreover, cutting planes can be added in order to strengthen the relaxation of each node,
and this is called branch-price-and-cut (Desrosiers and Lübbecke [2011]). These techniques
have not been implemented in our B&P procedure, however.

6 Computational results

6.1 Experimental setup

All the computational experiments are performed on a Dell Latitude E7250 laptop with an
Intel Core i5-5200U (2.20GHz) processor. A memory limit of 8GB and a time limit of two
hours are applied. The algorithms are coded in C++. For solving the linear programs, we
use CPLEX version 12.6.3.

We use the dataset of Wei et al. [2013], which was generated by the random network
generator RanGen Demeulemeester et al. [2003], and which is available online1. It contains
1080 instances in 108 different settings. Each setting is defined by a probability interval
PI ∈ {l,m, h}, an order strength value OS ∈ {0.4, 0.6, 0.8} and n ∈ {10, 20, . . . , 120}. PI
values represent low, medium, and high success probabilities as follows: l means pi ∈ [0, 0.2],
m implies pi ∈ [0.2, 0.8], and h indicates pi ∈ [0.8, 1]. The success probability of each test
is chosen randomly from the corresponding interval. OS is a measure of the density of a
precedence network, and is defined as the number of precedence-related test pairs divided
by the maximum possible number of such pairs. The cost of each test is chosen randomly
from {0, 1, . . . , 50}. Each instance is identified by (PI, OS, n, k), where k ∈ {1, 2, . . . , 10}
is the index of the instance in the setting. The three instances (l, 0.4, 90, 1), (m, 0.4, 90, 1),

1https://feb.kuleuven.be/public/u0004371/system_testing.htm

15

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be
https://feb.kuleuven.be/public/u0004371/system_testing.htm

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

and (h, 0.4, 90, 1) include identical precedence networks and testing costs, but have different
success probabilities.

6.2 Implementation details

In both DPn and DPp, we use binary search to find existing states in Φ and Ω. In implement-
ing DPp, and with minor modifications in PR, we define the states by (Y,

∏
j∈Z pj) rather

than (Y, Z). This alternative offers a more compact representation of Ω, as any two states
(Y, Z), (Y, Z ′) ∈ Ω with

∏
j∈Z pj =

∏
j∈Z′ pj will map to the same objective value in F̄ ().

In B&P, we have experimented with different branching orders including the lexicographical
order, the fractional variable closest to 0.5 first, the fractional variable corresponding to
activities with most successors/predecessors first, etc. We observe that the lexicographical
order performs the best.

We use a Greedy Randomized Adaptive Search Procedure (GRASP) Feo and Resende
[1995] for finding high-quality sets of initial columns for CG. The procedure iteratively
produces heuristic sequences, and keeps track of the best produced solution. Each individual
is constructed by gradually appending eligible tests to the sequence based on biased random
sampling, where an eligible test with lower ratio ci/(1−pi) has a higher selection probability.

6.3 Comparing the results

Table 2 compares the performance of our DP algorithm (DPn) with B&P and the DP algo-
rithm of Wei et al. [2013] (DPk), which is the current state of the art. The comparison is
performed with and without using the precedence theorems (TH) for strengthening the net-
works. The column TH+DPn, for instance, shows the performance of DPn after tightening
the precedence networks via the precedence theorems. Note that DPk was developed for k:n
systems, but in our computations we set k = n. The number of instances in each (OS, n)
setting (30 instances) that are solved to optimality is labeled as ‘#’. The average runtimes
(CPU) over the solved instances are expressed in seconds. For the DP algorithms, all the
unsolved instances are due to memory insufficiency, while the bottleneck of B&P for all the
unsolved instances is the time limit.

Based on the table, we observe that for all the three algorithms, the precedence theorems
clearly have a strongly beneficial effect. TH+DPn has the best performance among all the
six methods. It increases the size of solvable instances by up to 100% for OS = 0.4 when
compared to the previous state of the art, DPk. In this setting, 29 out of 30 of the largest
instances (with 120 tests) are solved to optimality. For OS = 0.6, for the very first time
in the literature, all the instances of the dataset are solved. The largest state space that is
solved by DPn without precedence theorems corresponds to an instance with OS = 0.4 and
n = 90, which has about 3.5 × 109 states. This is 245 times larger than the largest state
space that can be processed via DPk (OS = 0.4, n = 60).

With respect to runtimes, DPn is faster than DPk, and TH+DPn performs better than
TH+DPk. Overall, TH+DPn outperforms DPk by a factor of more than 200. While both
DPn and DPk have exponential worst-case complexity, the better performance of DPn is
the result of (1) increasing the density of the precedence networks via Theorems 1, 2, and
3, (2) eliminating the explicit enumeration of UDCs in our memory management, and (3)

16

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

OS n
TH+DPn DPn TH+DPk DPk TH+B&P B&P
CPU # CPU # CPU # CPU # CPU # CPU #

0.8

10 0.00 30 0.00 30 0.00 30 0.00 30 0.01 30 0.06 30
20 0.00 30 0.00 30 0.00 30 0.00 30 0.06 30 0.38 30
30 0.00 30 0.00 30 0.00 30 0.00 30 0.34 30 1.39 30
40 0.00 30 0.00 30 0.00 30 0.00 30 1.06 30 10.19 30
50 0.00 30 0.00 30 0.00 30 0.00 30 3.08 30 35.24 30
60 0.00 30 0.00 30 0.00 30 0.01 30 6.72 30 852.34 30
70 0.00 30 0.00 30 0.01 30 0.01 30 21.56 29 — 0
80 0.00 30 0.00 30 0.01 30 0.02 30 345.56 14 — 0
90 0.00 30 0.01 30 0.02 30 0.05 30 — 0 — 0
100 0.00 30 0.02 30 0.02 30 0.09 30 — 0 — 0
110 0.00 30 0.05 30 0.03 30 0.22 30 — 0 — 0
120 0.00 30 0.11 30 0.05 30 0.45 30 — 0 — 0

0.6

10 0.00 30 0.00 30 0.00 30 0.00 30 0.02 30 0.23 30
20 0.00 30 0.00 30 0.00 30 0.00 30 0.26 30 1.59 30
30 0.00 30 0.00 30 0.00 30 0.00 30 1.27 30 226.64 30
40 0.00 30 0.00 30 0.00 30 0.01 30 18.09 30 659.79 24
50 0.00 30 0.02 30 0.00 30 0.04 30 741.22 30 6235.40 10
60 0.00 30 0.07 30 0.02 30 0.24 30 3805.90 21 — 0
70 0.01 30 0.31 30 0.04 30 1.12 30 4023.52 12 — 0
80 0.03 30 1.19 30 0.15 30 4.11 30 — 0 — 0
90 0.08 30 4.96 30 0.33 30 15.57 30 — 0 — 0
100 0.20 30 23.79 30 0.77 30 61.55 27 — 0 — 0
110 0.59 30 112.14 30 2.76 30 — 0 — 0 — 0
120 1.57 30 579.20 30 5.22 30 — 0 — 0 — 0

0.4

10 0.00 30 0.00 30 0.00 30 0.00 30 0.04 30 1.49 30
20 0.00 30 0.00 30 0.00 30 0.00 30 0.69 30 42.18 30
30 0.00 30 0.01 30 0.00 30 0.03 30 79.23 29 2474.86 20
40 0.00 30 0.13 30 0.00 30 0.27 30 1099.44 27 1972.60 10
50 0.02 30 0.90 30 0.05 30 2.51 30 3770.86 9 — 0
60 0.08 30 11.58 30 0.19 30 31.61 30 — 0 — 0
70 0.49 30 89.33 30 0.95 30 — 0 — 0 — 0
80 2.05 30 877.90 30 5.10 30 — 0 — 0 — 0
90 12.58 30 8705.59 30 39.67 30 — 0 — 0 — 0
100 49.88 30 — 0 204.15 30 — 0 — 0 — 0
110 279.51 30 — 0 688.24 12 — 0 — 0 — 0
120 921.00 29 — 0 — 0 — 0 — 0 — 0

Table 2: Computational results of the three algorithms

using Theorem 4 to eliminate the unnecessary checks of the memory management technique
of Rostami et al. [2017]. Note that TH+DPk outperforms DPn, which indicates that the
beneficial effect of the precedence theorems is significantly stronger that the improving effect
of the new memory management technique.

The size of instances solvable by B&P is limited to 80 tests for OS = 0.8, 70 tests for
OS = 0.6, and 50 tests for OS = 0.4. More details on the performance of B&P are depicted
in Figure 6. Further numerical details on the computational results of B&P are presented
in Table 3, where we report the total number of nodes in the B&B tree (node) and the LP
integrality gaps (%LP). As expected, runtimes increase as n increases or OS decreases. The
results indicate that the quality of the LP bound is a major restriction. While the bound is
tight when PI = h, its quality deteriorates when PI ∈ {l,m}. Consequently, the number of
branched nodes increases in the latter two settings. Another observation is that the average

17

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

10 20 30 40 50 60

0

5

10

n

lo
g(

C
P

U
)

OS = 0.8

pi ∈ U [0, 0.2]
pi ∈ U [0.2, 0.8]
pi ∈ U [0.8, 1]

10 15 20 25 30 35 40

0

2

4

6

8

10

12

n

pi ∈ U [0.8, 1]

OS = 0.4
OS = 0.6
OS = 0.8

10 20 30 40 50 60

0

1,000

2,000

3,000

4,000

n

n
u
m

b
er

of
n
o
d
es

in
B

&
P

OS = 0.8

pi ∈ U [0, 0.2]
pi ∈ U [0.2, 0.8]
pi ∈ U [0.8, 1]

10 15 20 25 30 35 40

0

200

400

600

n

pi ∈ U [0.8, 1]

OS = 0.4
OS = 0.6
OS = 0.8

10 15 20 25 30 35 40

0

20

40

60

80

100

n

%
op

ti
m

al
it

y
ga

p
of

L
P

b
ou

n
d

OS = 0.6

pi ∈ U [0, 0.2]
pi ∈ U [0.2, 0.8]
pi ∈ U [0.8, 1]

10 15 20 25 30 35 40

0

20

40

60

80

100

n

pi ∈ U [0.2, 0.8]

OS = 0.4
OS = 0.6
OS = 0.8

Figure 6: Computation results of B&P within different settings

18

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

PI n
OS = 0.8 OS = 0.6 OS = 0.4

CPU node %LP # CPU node %LP # CPU node %LP #

l

10 0.13 4.20 5.23 10 0.51 19.00 53.15 10 3.12 155.80 76.57 10

20 0.61 18.00 22.37 10 2.40 90.80 65.18 10 67.85 2836.20 92.56 10
30 1.55 29.40 56.11 10 289.56 10305.60 81.22 10 3550.10 84750.86 99.89 7

40 16.50 489.60 65.78 10 691.52 13778.50 98.65 8 — — — 0

50 54.07 1080.00 84.86 10 — — — 0 — — — 0
60 49.60 3646.80 83.13 10 — — — 0 — — — 0

m

10 0.03 0.60 0.34 10 0.15 6.20 6.74 10 1.30 82.60 31.03 10

20 0.40 13.00 5.02 10 2.10 84.80 13.60 10 58.19 2240.80 52.82 10

30 1.81 50.60 10.71 10 386.45 11006.40 46.80 10 7727.23 41908.00 84.68 3
40 11.57 335.00 34.96 10 1178.54 9683.67 59.82 6 — — — 0

50 45.68 813.00 36.62 10 — — — 0 — — — 0

60 150.41 2308.40 37.96 10 — — — 0 — — — 0

h

10 0.02 0.00 0.00 10 0.04 0.20 0.02 10 0.05 0.80 0.05 10
20 0.14 0.00 0.00 10 0.25 0.20 0.00 10 0.51 1.40 0.08 10
30 0.80 3.40 0.03 10 3.92 3.40 0.15 10 146.48 208.80 1.37 10

40 2.50 1.20 0.10 10 323.16 14.20 0.11 10 1972.60 702.20 1.02 10
50 5.98 7.20 0.01 10 6235.40 402.20 1.10 10 — — — 0
60 2357.00 36.20 0.12 10 — — — 0 — — — 0

Table 3: Detailed computational results for the B&P algorithm

runtime of the instances with PI = h and n = 60 is higher than the average runtime of
the instances with the same size but PI ∈ {l,m}. This implies that the branching tree is
smaller when PI = h, but obtaining an optimal fractional solution at each node is more
time-consuming. By profiling our codes, we also observed that the percentage of the B&P
runtime that is spent on pricing increases as the OS decreases, the length of the probability
interval increases, or the success probabilities decrease. While this percentage is consistently
negligible (less than 1%) when PI = h or OS = 0.8, it increases up to 30% for PI = m and
OS = 0.4.

7 Conclusions

In this article, we have studied the sequential testing problem for n:n systems. We have
developed a linear formulation for the problem via Dantzig-Wolfe decomposition of a compact
nonlinear formulation. We have proved three precedence theorems that can identify dominant
precedence constraints, which are respected by at least one optimal solution. The theorems
can be used in a pre-processing step to increase the density of the precedence networks.

A DP algorithm has been proposed for solving the problem. Using a novel memory man-
agement technique, our DP significantly reduces the memory requirements and the compu-
tation times. We have empirically shown that the combination of the precedence theorems
and our DP is faster than the current best performing procedure by a factor of more than
200, and increases the size of solvable instances by up to 100%.

For comparison purposes, a B&P algorithm has also been devised for solving the integer
linear formulation. We have shown that solving a relaxation of the pricing problem can
improve the efficiency of its solution method. This relaxation can be solved efficiently as a
maximal flow problem. Our computational results indicate that the performance of B&P is
inferior to the DP, however, mainly due to weak LP bounds.

19

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

References

U.S. Food & Drug Administration (FDA). http://www.fda.gov. Accessed: 2016-09-30.

G. Bellala, S. K. Bhavnani, and C. Scott. Group-based active query selection for rapid
diagnosis in time-critical situations. IEEE Transactions on Information Theory, 58(1):
459–478, 2012.

Y. Ben-Dov. Optimal testing procedures for special structures of coherent systems. Man-
agement Science, 27(12):1410–1420, 1981.

H. Boothroyd. Least-cost testing sequence. Journal of the Operational Research Society, 11
(3):137–138, 1960.

E. Boros and T. Ünlüyurt. Diagnosing double regular systems. Annals of Mathematics and
Artificial Intelligence, 26(1-4):171–191, 1999.

R. Butterworth. Some reliability fault-testing models. Operations Research, 20(2):335–343,
1972.

M. F. Chang, W. Shi, and W. K. Fuchs. Optimal diagnosis procedures for k-out-of-n struc-
tures. IEEE Transactions on Computers, 39(4):559–564, 1990.

S. Y. Chiu, L. A. Cox Jr, and X. Sun. Optimal sequential inspections of reliability systems
subject to parallel-chain precedence constraints. Discrete Applied Mathematics, 96:327–
336, 1999.

K. Coolen, W. Wei, F. Talla Nobibon, and R. Leus. Scheduling modular projects on a
bottleneck resource. Journal of Scheduling, 17(1):67–85, 2014.

S. Creemers, R. Leus, and M. Lambrecht. Scheduling Markovian PERT networks to maximize
the net present value. Operations Research Letters, 38(1):51–56, 2010.

S. Creemers, B. De Reyck, and R. Leus. Project planning with alternative technologies in
uncertain environments. European Journal of Operational Research, 242(2):465–476, 2015.

R. Daldal, I. Gamzu, D. Segev, and T. Ünlüyurt. Approximation algorithms for sequential
batch-testing of series systems. Naval Research Logistics (NRL), 63(4):275–286, 2016.

B. De Reyck and R. Leus. R&D-project scheduling when activities may fail. IIE Transactions,
40:367–384, 2008.

E. Demeulemeester, M. Vanhoucke, and W. Herroelen. RanGen: A random network gener-
ator for activity-on-the-node networks. Journal of Scheduling, 6(1):17–38, 2003.

J. Desrosiers and M. E. Lübbecke. Branch-price-and-cut algorithms. Encyclopedia of Opera-
tions Research and Management Science. John Wiley & Sons, Chichester, pages 109–131,
2011.

20

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be
http://www.fda.gov

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power
estimation. Soviet Mathematics Doklady, 11(5):1277–1280, 1970.

S. O. Duffuaa and A. Raouf. An optimal sequence in multicharacteristics inspection. Journal
of Optimization Theory and Applications, 67(1):79–86, 1990.

T. A. Feo and M. G. Resende. Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6(2):109–133, 1995.

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.

M. R. Garey. Optimal task sequencing with precedence constraints. Discrete Mathematics,
4(1):37–56, 1973.

B. Gluss. An optimum policy for detecting a fault in a complex system. Operations Research,
7(4):468–477, 1959.

S. M. Johnson. Optimal sequential testing. Technical Report RM-1652, Rand Corporation,
1956.

J. Kanet. New precedence theorems for one-machine weighted tardiness. Mathematics of
Operations Research, 32(3):579–588, 2007.

F. P. Kelly. A remark on search and sequencing problems. Mathematics of Operations
Research, 7(1):154–157, 1982.

D. Madigan, S. Mittal, and F. Roberts. Efficient sequential decision-making algorithms for
container inspection operations. Naval Research Logistics (NRL), 58(7):637–654, 2011.

R. K. Martin. Large Scale Linear and Integer Optimization: A Unified Approach. Springer
Science & Business Media, 2012.

L. G. Mitten. An analytic solution to the least cost testing sequence problem. Journal of
Industrial Engineering, 11(1):17, 1960.

C. L. Monma and J. B. Sidney. Sequencing with series-parallel precedence constraints.
Mathematics of Operations Research, 4(3):215–224, 1979.

J.-C. Picard. Maximal closure of a graph and applications to combinatorial problems. Man-
agement Science, 22(11):1268–1272, 1976.

C. N. Potts. An algorithm for the single machine sequencing problem with precedence
constraints. In Combinatorial Optimization II, pages 78–87. Springer, 1980.

S. Rostami, S. Creemers, and R. Leus. Precedence theorems and dynamic programming for
the single-machine weighted tardiness problem. Technical Report KBI 1715, KU Leuven,
Faculty of Economics and Business, 2017.

S. N. Salloum. Optimal testing algorithms for symmetric coherent systems. PhD thesis,
University of Southern California, 1979.

21

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

S. N. Salloum and M. A. Breuer. Fast optimal diagnosis procedures for k-out-of-n: G systems.
IEEE Transactions on Reliability, 46(2):283–290, 1997.

N. Samphaiboon and Y. Yamada. Heuristic and exact algorithms for the precedence-
constrained knapsack problem. Journal of Optimization Theory and Applications, 105
(3):659–676, 2000.

M. Savelsbergh. A branch-and-price algorithm for the generalized assignment problem. Op-
erations Research, 45(6):831–841, 1997.

T. Ünlüyurt. Sequential testing of complex systems: A review. Discrete Applied Mathematics,
142:189–205, 2004.

F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming and ways to per-
form branching in a branch-and-price algorithm. Operations Research, 48(1):111–128,
2000.

B. J. Wagner and D. J. Davis. Discrete sequential search with group activities. Decision
Sciences, 32:557–573, 2001.

W. Wei, K. Coolen, and R. Leus. Sequential testing policies for complex systems under
precedence constraints. Expert Systems with Applications, 40(2):611–620, 2013.

P. Wentges. Weighted dantzig–wolfe decomposition for linear mixed-integer programming.
International Transactions in Operational Research, 4(2):151–162, 1997.

22

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be

	Introduction and related work
	Problem statement
	Precedence theorems
	DP algorithm
	DP recursion
	DP memory management

	Column generation
	The pricing problem
	A DP algorithm for solving PR
	A relaxation of PR

	Branch-and-price

	Computational results
	Experimental setup
	Implementation details
	Comparing the results

	Conclusions

