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Abstract - We propose a new method to evaluate any stationary joint replen-

ishment policy under compound Poisson demand. The method makes use of an

embedded Markov chain that only considers the state of the system after an

order is placed. The resulting state space reduction allows exact analysis of in-

stances that until now could only be evaluated using approximation procedures.

In addition, the size of the state space is not affected if we include nonzero lead

times, backlog, and lost sales. We characterize the optimal joint replenishment

policy, and use these characteristics to develop a greedy-optimal algorithm that

generalizes the can-order policy, a well-known family in the class of joint replen-

ishment policies. We numerically show that this generalized can-order policy

only marginally improves the best conventional can-order policy. For sizeable

systems with multiple items, the latter can now be found using our exact embed-

ded Markov-chain method. Finally, we use our method to improve and extend

the well-known decomposition approach.

Keywords - inventory, joint replenishment, can-order policy, embedded Markov

chain

1 Introduction and Literature Review

The Joint Replenishment Problem (JRP) arises in environments where a group of items

share a common resource, like a production line or transportation mode. In this context,

there is an opportunity to exploit economies of scale by coordinating the replenishments

for the different items, and to share the fixed cost associated with a replenishment. In a

manufacturing setting, this fixed cost may be a setup cost in a facility that produces multiple

items. In a distribution setting where multiple items can be shipped together, an order cost

per shipment is incurred, independent of the number of different items in the shipment, and

there are additional item-dependent costs for picking and processing (if items are delivered
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to geographically separated locations, the minor order cost may also reflect the cost of last-

mile delivery). An order cannot be placed unless the major setup or order cost is also

incurred. Once the major cost is incurred, any item can be ordered by simply incurring its

minor setup or order cost. In most cases, the major and minor costs are large enough to

benefit from consolidation of some, but not all, orders. Joint replenishment is relevant in

retail operations, where multiple products are jointly replenishment using the same transport

mode. Joint replenishment recently also gained momentum in the context of co-loading or

collaborative shipping, where sharing transportation capacity between companies has shown

large potential to increase truck fill rates and reduce CO2 emissions. By bundling shipments

with other partners or backhauling empty truckloads, available space in truck hauls for one

company can be used to transport shipments for other companies (Creemers et al., 2017).

This requires synchronisation of orders, which is in turn facilitated by a joint replenishment

policy (Padilla Tinoco et al., 2017).

The goal of the JRP is to identify an order policy that minimizes inventory and order

costs. Unfortunately, the optimal policy has no simple form: Ignall (1969) showed that

the order quantity of the item triggering the order depends on the other item’s inventory

positions. The optimal joint replenishment policy can, theoretically, be found by solving a

Markov-decision model. As the size of the state and the action space grow exponentially

with the number of different items, however, it is impossible to solve the model for more

than a few items. Even for two items, the optimal policy can only be found for problems of

limited size.

The intractability of the JRP inspired the development of various heuristic policies

(see e.g., Goyal and Satir (1998) and Khouja and Goyal (2008) for an overview). A well-

performing class of joint replenishment policies for stochastic demand is the family of can-

order policies (Balintfy 1964). Under the regime of a can-order policy, each item i is con-

trolled by three parameters si < ci ≤ Si. When item i’s inventory position reaches its

re-order level si, a replenishment order is triggered. At that time, any item j 6= i, with

inventory position at or below its can-order level cj, is also included in the order. Any order

placed raises the inventory position up to its respective base-stock level Si or Sj. Although

not optimal, can-order policies retain the advantages and flexibility of individual ordering,

yet may reduce order costs by permitting joint ordering.

The control mechanism of the can-order policy is rather simple, but the interaction

between the items makes finding the optimal can-order policy parameters intractable for

more than a few items when using traditional Markov-chain analysis. Several methods

have been suggested for computing “good” can-order policies, the most famous being the

decomposition approach. This method decomposes the N -item problem into N independent
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single item problems with normal (at full order cost) and discounted (at only minor order

cost) replenishment opportunities. Discounted opportunities for item i occur when item j 6= i

reaches its re-order point and places an order. Assuming that the discount opportunity

process for item i is Poisson and independent of item i (as in Silver (1974) and Federgruen

et al. (1984)), Zheng (1994) shows that the can-order policy is indeed optimal for item i,

but it is not necessarily the cost-minimizing policy across all items (Ignall 1969).

The assumption of exponential times between discounted replenishment opportunities is

only reasonable, however, if the number of items N is large, and the ratio of major to minor

order cost is low; in those cases the individual replenishments get more sparse. Moreover,

as the decomposition approach makes use of an approximate cost function to optimize the

parameters of the can-order policy, its cost performance, evaluated by simulation, tends to be

worse than the best can-order policy (van Eijs 1994). Schultz and Johansen (1999) improve

by showing that the interarrival times of discounts fit an Erlang, rather than an exponential,

distribution. Melchiors (2002) suggests to compensate the item triggering the order for the

other items joining the order opportunity. Their resulting can-order policies perform slightly

better.

Comparative studies have pointed to the poor performance of the can-order policies,

compared to periodic joint replenishment policies (Atkins and Iyogun (1988), Pantumsinchai

(1992), and Viswanathan (1997, 2007)) when the major set-up cost is high. This has been

contested, however, as this is due to the poor performance of the approximate cost evaluation

method of the decomposition approach rather than due to the can-order policy itself (van Eijs

1994). Schultz and Johansen (1999) and Melchiors (2002) also show that can-order policies

still outperform periodic policies for a large instance of 12 items introduced by Atkins and

Iyogun (1988).

Padilla Tinoco et al. (2017) characterize the replenishment cycle under a can-order policy

by a Markov process. This allows an exact cost evaluation. Assuming zero lead times and

two items, the infinitesimal generator of the corresponding continuous-time Markov chain

has state space dimension S1S2 × S1S2, with S1 and S2 the respective base-stock levels of

both items. For multiple items and large values of Si, it becomes computationally intractable

to determine the steady-state distribution of this Markov chain, and a traditional Markov-

chain analysis is elusive. Kayış et al. (2008) model the inventory system as a semi-Markov

decision process, and propose a simple enumeration algorithm to determine the optimal

parameters of the can-order policy. By restricting their attention to only two items, the

problem is still tractable. Using numerical examples, they quantify the errors introduced by

the decomposition method. Feng et al. (2015) consider the JRP with correlated demand.

They model the problem as a Markov decision process and determine the optimal policy
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using policy iteration for small problems with a few items. In order to capture the correlated

demand, they propose an extension of the can-order policy; the (s, c, d, S) policy, where di is

the smallest order-up-to level of item i if it is included in the order. They propose a linear

interpolation to determine the order-up-to level in [di, Si] that is used if a given set of items

joins the order. As such, depending on the set of items that join the order, the (s, c, d, S)

policy allows to order less than the order-up-to level.

This article contributes to the JRP literature as follows. We present a new embedded

Markov-chain model to evaluate any stationary joint replenishment policy under compound

Poisson demand. The method allows to evaluate sizeable instances due to the substantial re-

duction of the state space when compared to a traditional Markov-chain approach. Whereas

the current state of the art in the literature restricts the exact analysis to small problems

with small maximum inventory, our method allows a numerical analysis for sizeable instances

with multiple items. Moreover, our method can incorporate backlog, lost sales, compound

demands, and nonzero lead times without increasing the dimensions of the state space. This

contrasts to a traditional Markov-chain analysis, where the size of the state space grows

rapidly with any of these model extensions. Our exact and efficient solution procedure is a

unique methodological contribution that is novel to the inventory management (and by ex-

tension the joint replenishment) literature. Alternative exact methods rely on conventional

Markov-chain analysis to evaluate inventory policies, combined by a search procedure to op-

timize the policy parameters, or relies on Markov decision processes to identify the optimal

policy. These solution methods are constrained as they can only be used for small-scale

problems due to the triple curse of dimensionality. Thanks to the substantial reduction in

state space, our method allows an exact analysis for instances that until now could only be

evaluated using approximation procedures.

We also characterize the optimal policy, and use our findings to develop a greedy-optimal

algorithm that generalizes the can-order policy. Using a set of numerical examples, we show

that the generalized can-order policy is only marginally better than the best conventional

can-order policy. This implies that the conventional can-order policy, when implemented

with its optimal parameter set, performs very close to the optimal solution. Using our

embedded Markov-chain method, this optimal parameter set can now be found for sizeable

instances with multiple items.

We finally use our method to improve and extend the conventional decomposition ap-

proach that is used to optimize the can-order policy for multiple items. The conventional

decomposition approach decomposes the N -item problem into N single-item problems that

are solved approximately. Our method allows the exact evaluation of single-item problems,

as well as the exact analysis of multi-item problems. We show how the extension of the
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conventional decomposition approach into smaller multi-item problems produces can-order

policies that are closer to the best can-order policy.

2 Problem description and formulation

We consider a multi-item environment where each item i : i ∈ N = {1, 2, . . . , N} faces

a Poisson demand process with rate parameter λi. A demand for item i may trigger a

replenishment order of item i at cost K + ki. If an order is placed, all items j ∈ N \ {i}
may also be included in the same replenishment at minor order cost kj. Per unit inventory,

a holding cost hi is incurred per unit of time for all i ∈ N. For now, we assume orders

are instantaneously received in inventory and inventories are non-negative. We refer to this

setting as the base case. Extensions to the base case, including backlog, lost sales, compound

demands, and nonzero lead times, are outlined in Section 7.

Key to our method is the definition of two sets of states: (1) a set of X trigger states

X = {X1,X2, . . . ,XX}, that define the inventory positions of each item at the instant

a new replenishment order is placed or triggered, and (2) a set of Y initial states Y =

{Y1,Y2, . . . ,YY }, that define the inventory positions of each item after an order is placed.

Trigger state x ∈ {1, 2, ..., X} is defined by the inventory position of each item i in trigger

state x, Xx = {Ix1, Ix2, . . . , IxN}. Initial state y ∈ {1, 2, ..., Y } is defined by the inventory

position of each item i in initial state y, Yy = {Iy1, Iy2, . . . , IyN}. We set up a Discrete-Time

Markov Chain (DTMC) that only considers transitions between initial states.

A policy P defines the order decisions in each of the trigger states. More formally, policy

P may be seen as a mapping function P : X 7→ Y that maps each trigger state in X to an

initial state in Y . In short, we denote P(x) = y. Any admissible replenishment policy can

be defined using P . For instance, a can-order policy with re-order levels s = {s1, s2, . . . , sN},
can-order levels c = {c1, c2, . . . , cN}, and order-up-to levels S = {S1, S2, . . . , SN} is defined

by:

IP(x)i = Si if Ixi ≤ ci, ∀i ∈ N, x ∈ X ,
IP(x)i = Ixi otherwise, ∀i ∈ N, x ∈ X ,

with X the set of all trigger states for which the inventory of one item i : i ∈ N has inventory

position Ixi = si, and all other items j 6= i have inventory position Ixj > sj.

Example: We illustrate how our method evaluates a can-order policy, and compare our

method with the traditional Markov-chain approach. We note that any stationary policy can

be modelled using this method. The motivation behind the example is its simplicity, while

at the same time being capable to illustrate a number of learning points. We consider two

items with Poisson demand and rate parameters λ1 = 12 and λ2 = 16, and cost parameters
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h1 = 12, h2 = 23, K = 25, k1 = 7, and k2 = 21. Assuming zero lead time, an order is

triggered whenever an item depletes its inventory. We evaluate the costs of the can-order

policy with S1 = 7, S2 = 8, c1 = 4, c2 = 2, and s1 = s2 = 0. Policy P is thus defined by:

IP(x)1 = 7 if Ix1 ≤ 4, ∀x ∈ X ,
IP(x)1 = Ix1 if Ix1 > 4, ∀x ∈ X ,
IP(x)2 = 8 if Ix2 ≤ 2, ∀x ∈ X ,
IP(x)2 = Ix2 if Ix2 > 2 ∀x ∈ X ,

where X has 15 trigger states: X1 = {0, 8}, X2 = {0, 7}, X3 = {0, 6}, X4 = {0, 5}, X5 =

{0, 4}, X6 = {0, 3}, X7 = {0, 2}, X8 = {0, 1}, X9 = {7, 0}, X10 = {6, 0}, X11 = {5, 0},
X12 = {4, 0}, X13 = {3, 0}, X14 = {2, 0}, and X15 = {1, 0}.

To evaluate policy P, the traditional Markov-chain approach uses a continuous-time

Markov chain (CTMC) with S1 × S2 = 56 states. The infinitesimal generator of the CTMC

is given in Table 12 in Appendix, and its steady-state distribution can be used to evaluate

the cost of policy P. Our method evaluates the steady-state distribution of a DTMC with

only Y = 8 initial states: Y1 = {7, 8}, Y2 = {7, 7}, Y3 = {7, 6}, Y4 = {7, 5}, Y5 = {7, 4},
Y6 = {7, 3}, Y7 = {6, 8}, and Y8 = {5, 8}. This reduction in the number of states reduces

the computational effort required to evaluate policy P significantly.

The transitions between initial states of our DTMC are driven by the probability to

transition from initial state y to trigger state x, defined by Pyx, that can be obtained using

the multinomial distribution:

Pyx =


(∆yx − 1)!∏N
i=1 (Iyi − I ′xi)!

N∏
i=1

(
λi
λN

)(Iyi−Ixi)

if Iyi ≥ Ixi ∀i ∈ N,

0 otherwise,

(1)

where ∆yx =
∑N

i=1 (Iyi − Ixi) and I ′xi = (Ixi + 1) if item i triggers the order in trigger state

x, and I ′xi = Ixi otherwise (note that, if item i triggers the order in trigger state x, inventory

position Ixi is never visited; hence the definition of I ′xi). The parameter λN =
∑N

i=1 λi defines

the demand rate over all items. Given Pyx and P , the probabilities to transition from initial

state y to initial state y′, denoted φyy′ , are then characterized by:

φyy′ =
X∑
x=1

Pyxδxy′ , (2)

where δxy′ = 1 if P(x) = y′, and δxy′ = 0 otherwise. The probabilities φyy′ define the
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DTMC with transitions from one initial state to another. Let π = {π1, π2, . . . , πY } denote

the steady-state distribution of this DTMC, with πy denoting the steady-state probability

of being in initial state y.

The expected time until the subsequent order, Ty, the expected order cost, Oy, and the

expected cumulative inventory holding cost until the subsequent order is triggered, Hy, are

performance measures associated with initial state y, and can be derived as follows:

Ty = λ−1N

X∑
x=1

Pyx∆yx, (3)

Hy = λ−1N

X∑
x=1

Pyx∆yx

(
N∑
i=1

(
I ′xi +

Iyi − I ′xi
2

)
hi

)
, (4)

Oy =
X∑
x=1

Pyx

(
K +

N∑
i=1

kiγxi

)
, (5)

where γxi = 1 if item i triggers or joins the order in trigger state x, and γxi = 0 otherwise.

The cost of policy P , denoted C(P), is then given by:

C(P) =

Y∑
y=1

πy (Oy +Hy)

Y∑
y=1

πyTy

. (6)

Similar to the traditional Markov-chain approach, the calculation of the steady-state

distribution π is the computational bottleneck to evaluate C(P). It requires the inversion of

a matrix whose size is determined by the number of states in the Markov chain. For instance,

if Gauss-Jordan elimination is used to invert the matrix, the complexity is O(n3), with n

denoting the number of states of the Markov chain. A traditional Markov-chain approach

considers all states, including the transient states when transitioning from one initial state

to another. Our method, in contrast, only considers initial states: states in which you end

up after an order is placed. As a result, our method dominates a traditional Markov-chain

approach, and never requires more states than a traditional Markov-chain approach.

The reduction in the number of states can be significant. A can-order policy, for instance,

with re-order levels s = {s1, s2, . . . , sN}, can-order levels c = {c1, c2, . . . , cN}, and base-

stock levels S = {S1, S2, . . . , SN} has X =
∑N

i=1

∏
j∈N\{i} (Sj − sj) trigger states and Y =∑N

i=1

∏
j∈N\{i} (Sj − cj − ωij) initial states, with ωij = 1 if j < i, and ωij = 0 otherwise.

In a traditional Markov-chain approach, the total number of states is
∏N

i=1 (Si − si). For

instance, the traditional Markov-chain approach to evaluate a can-order policy for four items
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with s = {0, 0, 0, 0}, c = {13, 7, 11, 7}, and S = {18, 11, 16, 11} uses 34,848 states, whereas

our method only requires 256 initial states.

The significant reduction of the state space to only initial states allows the exact eval-

uation of joint replenishment policies for instances that until now could only be evaluated

using approximation procedures. Ignall (1969) restricts his analysis of the optimal joint re-

plenishment policy to small two-item problems with a combined inventory of maximum 8

units. To limit the dimensions of the state space, Kayış et al. (2008) and Padilla Tinoco

et al. (2017) restrict their analysis of the best can-order policy to only two items. Feng et

al. (2015) are also limited to analyzing small instances with only a few items. Our method

allows the analysis of sizeable instances with multiple items. To date, the literature relied

on approximation procedures for such problem instances.

Example We continue with the same example introduced earlier in this section, and illustrate

how the transition matrix of the DTMC is set up. For instance, take initial state Y6 = {7, 3}.
From Y6, we can end up in any of the following trigger states: X6 = {0, 3}, X7 = {0, 2},
X8 = {0, 1}, X9 = {7, 0}, X10 = {6, 0}, X11 = {5, 0}, X12 = {4, 0}, X13 = {3, 0}, X14 =

{2, 0}, and X15 = {1, 0}. Using Eq. (1), we can determine the transition probability from

Y6 to each of these trigger states. For instance, the probability to transition to X8 = {0, 1}
is:

P68 =
8!

6!2!

(
12

28

)7(
16

28

)2

=
139, 968

5, 764, 801
= 0.0243.

The logic behind the above calculation is illustrated in Figure 1, that represents the probability

tree when departing from initial state Y6. At any given state in the tree that is not a trigger

state, we can either move up (if demand for item 1 happens first) or move down (if demand

for item 2 happens first). The probability of moving up or down is dictated by the law of

competing exponentials; e.g., demand for item 1 happens first with probability λ1λ
−1
N = 12/28.

From Y6 there are many paths to X8 = {0, 1}, and all need to be considered when determining

P68, the probability to reach trigger state 8 from initial state 6. As illustrated above, and as

given by Eq. (1), the multinomial distribution can be used to calculate P68.

When the system ends up in a trigger state, an order is placed, and a transition is

made to an initial state. The expected time until order placement T6, its corresponding order

cost O6, and the expected cumulative holding cost H6 can be derived by summing (over all

trigger states) the product of P6x with respectively, the expected transition time, the cost of

the order placement, and the expected cumulative holding cost.

In Table 1 we describe for a transition from Y6 to each trigger state x: the transition

probability P6x; the initial state after placing the new order; the cost of the order placement;

the number of transitions prior to order placement ∆6x; the expected transition time; and
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Figure 1: Probability tree that illustrates the transition probabilities when departing from
initial state Y6 = {7, 3} (printed in purple) to end up in each of the accessible trigger states
(printed in blue).
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Table 1: Starting from Y6 = {7, 3}, the transition probabilities P6x to each of the trigger
states x, the initial state after the order is placed, the corresponding cost of the order
placement, the number of transitions to reach trigger state x, its corresponding expected
transition time, and the expected cumulative holding cost.

Transition State Order Number Expected Expected
x probability after cost of transition holding

P6x order transitions time cost (cum.)

{0, 3} 0.0027 {7, 3} 32 7 7/28 29.2500
{0, 2} 0.0106 {7, 8} 53 8 8/28 30.1429
{0, 1} 0.0243 {7, 8} 53 9 9/28 30.2143
{7, 0} 0.1866 {7, 8} 46 3 3/28 13.9286
{6, 0} 0.2399 {6, 8} 46 4 4/28 17.7143
{5, 0} 0.2056 {5, 8} 46 5 5/28 21.0714
{4, 0} 0.1469 {7, 8} 53 6 6/28 24.0000
{3, 0} 0.0944 {7, 8} 53 7 7/28 26.5000
{2, 0} 0.0567 {7, 8} 53 8 8/28 28.5714
{1, 0} 0.0324 {7, 8} 53 9 9/28 30.2143

the expected cumulative holding cost until the subsequent order. For instance, starting from

initial state Y6 = {7, 3}, it takes 9 transitions to end up in X8 = {0, 1}. Each transition is

expected to take λ−1N = 1/28 time units, and hence, we expect that it will take 9/28 time units

before we end up in X8 = {0, 1}. During each of these transitions, inventory is kept for

both items. For item 2, an average of 2 (i.e., 1 + (3− 1) × 2−1) units is kept in inventory

for 9 transitions. Therefore, for item 2, the expected cumulative holding cost amounts to

2 × 9 × 23 × 28−1 = 414/28. Analogously, for item 1, the expected cumulative holding cost is

432/28. For both items, the total expected cumulative holding cost is 846/28. Using Table 1, we

can calculate T6 = 0.1842, O6 = 48.5194, and H6 = 20.9369, using Eqs. (3–5). For instance,

T6 = (0.0027× 7/28) + (0.0106× 8/28) + (0.0243× 9/28) + (0.1866× 3/28) + (0.2399× 4/28) +

(0.2056× 5/28) + (0.1469× 6/28) + (0.0944× 7/28) + (0.0567× 8/28) + (0.0324× 9/28) = 0.1842.

Once probabilities Pyx are derived, we can determine φyy′ from Eq. (2) to set up the

DTMC. Table 2 reports the DTMC and its steady-state distribution π. For instance, the

probability to transition from initial state Y6 = {7, 3} to initial state Y7 = {6, 8} is given by

φ67 = 0.2399, and can also be derived from Figure 1; in fact, φ67 equals P610 as trigger state

X10 = {6, 0} is the only trigger state that links to initial state Y7 when departing from initial

state Y6. In order to calculate the cost of policy P, it suffices to use steady-state probabilities

π as weights for Oy, Ty, and Hy. Table 3 summarizes the results for each initial state y. We

can now use Eq. (6) to find C(P) = 109.0152/0.3838 = 284.0749.
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Table 2: Transition probability matrix and steady-state distribution of the DTMC that
models the transitions between initial states.

φyy′ {7, 8} {7, 7} {7, 6} {7, 5} {7, 4} {7, 3} {6, 8} {5, 8}
{7, 8} 0.6751 0.0106 0.0243 0.0416 0.0595 0.0748 0.0390 0.0752
{7, 7} 0.6994 0.0027 0.0106 0.0243 0.0416 0.0595 0.0597 0.1023
{7, 6} 0.6970 0.0000 0.0027 0.0106 0.0243 0.0416 0.0895 0.1343
{7, 5} 0.6640 0.0000 0.0000 0.0027 0.0106 0.0243 0.1306 0.1679
{7, 4} 0.6081 0.0000 0.0000 0.0000 0.0027 0.0106 0.1828 0.1958
{7, 3} 0.5518 0.0000 0.0000 0.0000 0.0000 0.0027 0.2399 0.2056
{6, 8} 0.6428 0.0212 0.0425 0.0647 0.0832 0.0951 0.0114 0.0390
{5, 8} 0.5632 0.0413 0.0708 0.0944 0.1079 0.1110 0.0000 0.0114

π 0.6516 0.0119 0.0248 0.040 0.055 0.0677 0.0606 0.0883

Table 3: For all initial states y : y ∈ Y , the steady-state probability πy, the expected order
cost Oy, the expected transition time Ty, the expected cumulative holding costs Hy, con-
tribution to expected total cost πy (Oy +Hy), and contribution to expected total transition
time πyTy.

y πy Oy Ty Hy πy (Oy +Hy) πyTy

{8, 7} 0.6516 47.6402 0.4267 70.9474 77.2744 0.2780
{7, 7} 0.0119 48.8153 0.3885 59.7237 1.2903 0.0046
{6, 7} 0.0248 49.5268 0.3447 49.0343 2.4483 0.0086
{5, 7} 0.0400 49.6959 0.2955 38.9584 3.5498 0.0118
{4, 7} 0.0550 49.3245 0.2417 29.5708 4.3382 0.0133
{3, 7} 0.0677 48.5194 0.1842 20.9369 4.7056 0.0125
{8, 6} 0.0606 46.0733 0.3942 63.5789 6.6396 0.0239
{8, 5} 0.0883 43.6824 0.3517 55.6045 8.7690 0.0311

Total 109.0152 0.3838
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3 Characteristics of the optimal policy

In Section 2 we showed how a DTMC that only considers transitions between initial states

can be used to efficiently evaluate the cost of a joint-replenishment policy. We illustrated

our approach by means of an evaluation of a can-order policy heuristic. In this section

we characterize the optimal joint replenishment policy, and use our findings to develop a

greedy-optimal algorithm in Section 4. We first define a number of preliminary notions:

• If a set of items N′ ⊆ N makes up the order that was triggered in trigger state x,

an order cost K +
∑

i∈N′ ki is incurred, and a set of initial states YxN′ ⊆ Y becomes

accessible (i.e., if item i orders, it can transition to initial states where item i’s inventory

has been replenished).

• Each initial state may be associated with a future cost, defined as the long-run cost

starting from that initial state and following policy P . In each set YxN′ we can identify

at least one initial state that has the smallest future cost.

• In trigger state x, optimal policy P∗ defines the set of items N′ and the initial state

y : y ∈ YxN′ that minimize the sum of the order and future cost; policy P∗ either

decides to include item i in the order such that more (and potentially better) initial

states become accessible, or not to include item i in order to avoid the minor order

cost.

In what follows we also assume that, if an order is triggered, any excess inventory can

be returned at no cost; i.e., we allow for negative orders of item j whenever an order is

triggered by item i 6= j. Therefore, if a set of items N′ ⊆ N is included in the order

that was triggered in trigger state x, a transition can be made to the set of initial states

YxN′ = {y|Iyi ≤ Ixi,∀i ∈ N \N′ ∧ Iyi ∈ Z,∀i ∈ N′}. The reason why we include negative

orders in the analysis is motivated by the observation that the optimal policy can include

negative orders. Negative orders may be seen as inventory that is returned to the supplier.

We first show that for a given set of items N′ ⊆ N ordered, it is always optimal to

transition to one and the same initial state. The latter is dependent on the inventory

positions of the items that are not ordered.

Theorem 1. In trigger states x and x′, it is optimal to transition to one and the same

initial state y if: (1) the same set of items N′ are included in the order that was triggered in

trigger states x and x′, and (2) Ixl = Ix′l for any item l /∈ N′.

Proof. Let y denote the initial state that has the smallest future cost among all initial

states in YxN′ . Hence, if items N′ are ordered in trigger state x, it is optimal to transition
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to initial state y. Next, consider trigger state x′, and let Yx′N′ denote the set of initial states

that become accessible if the set of items N′ is ordered in trigger state x′. Because Ixl = Ix′l

for any item l that is not included in the order, it follows that Yx′N′ ⊆ YxN′ , and initial state

y is also accessible in trigger state x′. Therefore, if initial state y has the smallest future cost

among all initial states in YxN′ , it also has the smallest future cost among all initial states

in Yx′N′ ⊆ YxN′ . Therefore, it is optimal to transition to initial state y if the items N′ are

ordered in trigger state x′.

Corollary 1. In any trigger state x, if all items N are included in the order, it is always

optimal to transition to one and the same initial state, i.e., the state with minimal future

costs among all possible initial states. This initial state is also referred to as the renewal

state.

Proof. Corollary 1 follows from Theorem 1.

Corollary 2. Given a set of items N′ ⊆ N included in the order, it is optimal to transition

to the renewal state if a transition can be made to this renewal state from trigger state x.

Proof. Among all possible initial states, the renewal state is the state that has the smallest

future cost. Hence, a transition is made towards the renewal state if it becomes accessible.

Note that, not all items need to be included in the order to make the renewal state accessible;

the inventory position of some items may already be at/above their level in the renewal

state.

We next show that, when it is optimal to order a set of items N′ ⊆ N for a given set of

inventory positions of items l /∈ N′, it is also optimal to order the same set N′ when items

N′ have a lower inventory position.

Theorem 2. If it is optimal to order the set of items N′ ⊂ N in trigger state x, it is also

optimal to order the same set N′ in trigger state x′ if: (1) Ix′i ≤ Ixi for any item i ∈ N′,

and (2) Ix′l = Ixl for any item l /∈ N′.

Proof. Suppose that in trigger state x it is optimal to order items N′ with order cost

K + ki +
∑

j∈N′ kj such that initial states YxN′ become accessible. In addition, let y denote

the initial state with the smallest future cost among all initial states in YxN′ . Then, for

trigger state x′ with Ix′l = Ixl for any item l /∈ N′, and Ix′i ≤ Ixi for all items i ∈ N′, it

follows that Yx′N′ ⊆ YxN′ . Furthermore, note that initial state y also becomes accessible in

x′ if we incur order cost K+ki+
∑

j∈N′ kj; the same order cost that was required to access y

in trigger state x. Because y minimizes the sum of order and future costs in x, and because
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all initial states accessible in x′ can also be made accessible in x at equal cost, it follows that

y also minimizes the sum of order and future costs in x′. Therefore, if it is optimal to order

items N′ in trigger state x, it is also optimal to order the same set of items in trigger state

x′.

Corollary 3. Item j has an optimal can-order level for each subset of trigger states

X ′ ⊂ X , for which Ixl = Ix′l, for all items l 6= j, and for all x, x′ ∈ X ′.

Proof. Corollary 3 follows from Theorem 2.

Corollary 4. In a system with two items, each item has a single optimal can-order level.

Proof. Corollary 4 follows from Theorem 2. In a system with two items, each item i only

has one subset of trigger states X ′ ⊂ X for which Ixl = Ix′l for l 6= i, and for all x, x′ ∈ X ′.

Finally, we show that when an item is included in an order, its optimal order size will

never exceed the optimal order size when it would be replenished individually.

Theorem 3. For any item i, it is never optimal to order up to an inventory position that

exceeds Qi, where Qi is the economic order quantity of item i when considering order cost

K + ki.

Proof. When considering only the costs of item i, it is never beneficial to order up to an

inventory position that exceeds Qi. Therefore, ordering up to an inventory higher than Qi

only makes sense if this results in additional opportunities for other items to join an order

triggered by item i. A larger order size of item i, however, generates less orders triggered

by item i. Therefore, it is never optimal to order up to an inventory position that exceeds

Qi.

Based on the above theorems and corollaries, we conclude that the optimal policy has a

can-order structure; a can-order level determines whether item j joins the order. The can-

order level itself is dependent on the inventory positions of the items that are not included

in the order. From Theorem 3, we also know that item i will never replenish more than Qi

units. In fact, we have observed that if item i is included in the order, it will most of the

times order up to its inventory position in the renewal state, i.e., the order-up-to level if all

items are jointly ordered. Nevertheless, if not all items are replenished simultaneously, it

may sometimes be better to synchronize the order of item i with the order cycle of an item

l that was not included in the order. In those cases, it may be optimal to order more (or

less) than up to the renewal inventory level.
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The optimal policy is therefore different from the conventional can-order policy, where

each item’s can-order level remains fixed, independent of the items ordered and the inventory

positions of the items that are not ordered. In addition, any order raises the inventory

position up to its respective order-up-to level. In what follows, we introduce a greedy-

optimal algorithm to modify the conventional can-order policy using the theorems above.

We refer to this modified can-order policy as the “generalized can-order policy”.

4 Generalizing the can-order policy

We use the characteristics of the optimal policy to generalize the conventional can-order

policy. To find the best generalized policy, we start from the conventional can-order policy P ,

with parameter values obtained using the decomposition heuristic, or obtained through a

numerical search over the parameter range.

We initialize the conventional can-order policy P with re-order levels s = {s1, s2, . . . , sN},
can-order levels c = {c1, c2, . . . , cN}, and order-up-to levels S = {S1, S2, . . . , SN} as:

IP(x)i = Si if Ixi ≤ ci, ∀i ∈ N, x ∈ X ,
IP(x)i = Ixi otherwise, ∀i ∈ N, x ∈ X ,

where X contains all trigger states x for which at most one item i has inventory position

Ixi = si.

Next, we generalize can-order policy P , using the greedy algorithm outlined in Algo-

rithm 1. Note that we adopt a greedy approach because it is not tractable to identify the

optimal policy using a brute-force approach for systems with more than two items. For each

item i triggering the order, and for each item j that may join the order triggered by i, we

define the subset of trigger states X ′ for each combination of values of Ix′l, for all items

l 6= {i, j} (if there are only two items, X ′ holds all trigger states of item i). For each trig-

ger state in X ′, the algorithm finds the optimal value of the can-order level for item j, as

well as the optimal values of the order-up-to levels for items i and j in case both items are

jointly ordered, and the optimal order-up-to level for item i if only item i is ordered. More

specifically, for each subset of trigger states X ′, the algorithm performs the following three

steps:

1. First, we initialize yR, the best initial state in which we end up if item j returns excess

inventory. Next, we define yJ , the initial state in which we end up if items i and j are

jointly ordered. From Theorem 1, it indeed follows that a transition is made to yJ in

any of the trigger states in X ′ if i and j are jointly ordered; yJ is then the initial state
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that minimizes the future cost among all accessible initial states from X ′ if i and j are

both ordered.

2. In a second step, we process all trigger states x : x ∈ X ′ in ascending order of Ixj. For

each trigger state x, we determine yM , the initial state in which we end up if item j

maintains its inventory level (i.e., it does not join the order nor does it return excess

inventory). If the cost of keeping item j at the same inventory level is lower than the

cost of returning excess inventory, yR is updated, and yM will become the new best

initial state in which excess inventory is returned. Next, we compare the cost of a joint

order (i.e., a transition is made to yJ) with the cost of maintaining or reducing item j’s

inventory (i.e., a transition is made to yR). If it is beneficial for item j to join item i’s

order, policy P is adapted accordingly, and trigger state x is removed from X ′ (i.e., it

has been processed). If, on the other hand, joining is no longer beneficial, we proceed

to step 3. Recall that, from Theorem 2, it follows that item j has an optimal can-order

level in a set of trigger states X ′, and for trigger states where the inventory of item j

exceeds this can-order level, it is no longer optimal for item j to join.

3. In a third step, we process any remaining trigger states x : x ∈ X ′ in ascending order

of Ixj. Since item j no longer joins the order of item i, it may no longer be optimal for

item i to order up to its inventory level in yJ , the initial state in which we end up if

items i and j are jointly ordered. Therefore, we first evaluate all order-up-to levels of

item i to determine yM ; the best initial state where item j maintains it inventory level.

The remainder of step 3 is in fact a repetition of the first part of step 2: we evaluate

whether it is better for item j to maintain its inventory (i.e., transition to yM) or to

return its excess inventory (i.e., transition to yR), and update yR if necessary. Next,

policy P is adapted accordingly, and trigger state x is removed from X ′. Step 3 finishes

if all trigger states in X ′ have been processed.

These steps are illustrated in the numerical example in the next section.

Although our greedy algorithm exploits the optimal policy characteristics, it is not per-

fect. First, policy P is sequentially updated per trigger state x. Due to its sequential nature,

it is possible that the optimal policy for trigger state x becomes suboptimal for a trigger

state x′ that was processed earlier. Therefore, we iteratively run Algorithm 1 until policy P
converges. Second, we process the items that can join item i’s order one by one. As a result,

when searching for item j’s optimal can-order level, the algorithm assumes that the policy of

the remaining N \ {i, j} items remains the same (i.e., changes that consider multiple items

simultaneously are not considered).
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Although the algorithm is computationally very fast, it can be further sped up by intro-

ducing the following adjustments. First, from Theorem 3, we know that an item’s order-up-to

level will never exceed its economic order quantity. Hence, it never makes sense to evaluate

order-up-to levels that exceed the economic order quantity. Second, assuming that the costs

are convex in the order-up-to levels (this assumption has been used for the conventional

can-order policy, see e.g., Zheng (1994)), it suffices to evaluate only new order-up-to levels

as long as the costs improve, rather than evaluating all possible order-up-to levels.

Note that Algorithm 1 requires the exact evaluation of a policy. As the algorithm com-

pares policies that only differ in a single trigger state, the cost difference is too small to

identify using simulation with a high level of confidence. For sizeable instances, such an

exact evaluation is only possible with the embedded Markov-chain method introduced in

Section 2.

Algorithm 1: Greedy algorithm to generalize policy P
forall the i ∈ N do

forall the j ∈ N \ {i} do
forall the X ′ ⊂ X do

Step 1:
Let yR = −1, and evaluate all order-up-to levels of i and j to determine yJ ;
Step 2:
do

Let x = x ∈ X ′ for which Ixj = min {Ix′j|x′ ∈ X ′};
if C(P|P(x) = yM) < C(P|P(x) = yR) then

yR = yM ;

if C(P|P(x) = yJ) < C(P|P(x) = yR) then
P(x) = yJ ∧ X ′ = X ′ \ {x};

else
break;

while X ′ 6= ∅;
Step 3:
while X ′ 6= ∅ do

Let x = x ∈ X ′ for which Ixj = min {Ix′j|x′ ∈ X ′};
Evaluate all order-up-to levels of item i to determine yM ;
if C(P|P(x) = yM) < C(P|P(x) = yR) then

yR = yM ;

P(x) = yR ∧ X ′ = X ′ \ {x};
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Table 4: The transitions from trigger state x to initial state y in the conventional can-order
policy P , defined by S1 = 7, S2 = 8, c1 = 4, c2 = 2, and the generalized policies P ′ and P ′′,
obtained after one and two iterations, respectively. Policy P ′′ is also the optimal policy.

P P ′ P ′′
(can-order) (first iteration) (second iteration)

x y x y x y

{0, 8} → {7, 8} {0, 8} → {7, 8} {0, 8} → {7, 8}
{0, 7} → {7, 7} {0, 7} → {7, 7} {0, 7} → {7, 7}
{0, 6} → {7, 6} {0, 6} → {7, 6} {0, 6} → {7, 6}
{0, 5} → {7, 5} {0,5} → {6,5} {0, 5} → {7, 5}
{0, 4} → {7, 4} {0,4} → {6,4} {0,4} → {6,4}
{0, 3} → {7, 3} {0, 3} → {7, 3} {0, 3} → {7, 3}
{0, 2} → {7, 8} {0, 2} → {7, 8} {0, 2} → {7, 8}
{0, 1} → {7, 8} {0, 1} → {7, 8} {0, 1} → {7, 8}
{7, 0} → {7, 8} {7, 0} → {7, 8} {7, 0} → {7, 8}
{6, 0} → {6, 8} {6,0} → {6,7} {6,0} → {6,7}
{5, 0} → {5, 8} {5,0} → {5,7} {5,0} → {5,7}
{4, 0} → {7, 8} {4,0} → {4,7} {4,0} → {4,7}
{3, 0} → {7, 8} {3, 0} → {7, 8} {3, 0} → {7, 8}
{2, 0} → {7, 8} {2, 0} → {7, 8} {2, 0} → {7, 8}
{1, 0} → {7, 8} {1, 0} → {7, 8} {1, 0} → {7, 8}
C(P) = 284.0749 C(P ′) = 283.8574 C(P ′′) = 283.8571

5 Numerical analysis

We illustrate how the algorithm can be used to identify the generalized can-order policy by

three numerical examples.1 The first example illustrates, for the numerical setting introduced

in Section 2, how the algorithm updates the conventional can-order policy in two iterations

towards the optimal policy P ′′, and reduces costs slightly, see Table 4.

Table 4 can also be used to illustrate Algorithm 1. In order to obtain policy P ′, we

start from can-order policy P , and select the first item (item i) in N. In the example,

there are only two items, and therefore, only the second item (item j) remains in N \ {i}.
If the first item triggers the order, the subset of trigger states X ′ contains trigger states

X1 = {0, 8}, X2 = {0, 7}, X3 = {0, 6}, X4 = {0, 5}, X5 = {0, 4}, X6 = {0, 3}, X7 = {0, 2},
and X8 = {0, 1}. We will now illustrate the three steps of Algorithm 1. In a first step, we

initialize yR (the best initial state in which we can end up after returning inventory of the

second item) at -1. Next, we let yJ = Y1 = {7, 8}, the initial state in which we end up if

both items join the order in can-order policy P . In a second step, we select (from X ′) the

1Our findings are also confirmed by an extensive numerical experiment of 154 problem instances with 2,
3 and 4 items that have different cost parameters.
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trigger state that has the smallest inventory for the second item (i.e., X8 = {0, 1}). For

this trigger state, we evaluate whether or not it is better for the second item to maintain

its inventory, or to reduce its inventory. As the inventory of the second item cannot be

reduced in state X8 = {0, 1}, the minimal cost is obtained when the second item maintains

its inventory, and we let yR = yM = {7, 1}. Next, we evaluate whether or not the second

item should join the order triggered by the first item; i.e., we compare the cost of the policy

in which the second item joins the order in trigger state X8 = {0, 1} against the policy

in which the second item does not join the order in trigger state X8 = {0, 1}. In case of

trigger state X8 = {0, 1}, the cost of joining is smaller than the cost of not joining (i.e.,

C(P|P(x) = yJ) < C(P|P(x) = yR)), and we update the generalized policy P ′ accordingly

(i.e., in trigger state X8 = {0, 1}, the second item should join the order triggered by the first

item, and a transition is made to initial state yJ = Y1 = {7, 8}). Afterwards, we remove

trigger state X8 = {0, 1} from the subset of trigger states X ′. At this point, step 2 has

been performed for trigger state X8 = {0, 1}, and we move on to the next trigger state

X7 = {0, 2}. For trigger state X7 = {0, 2}, the procedure is similar to that of trigger state

X8 = {0, 1}, and we will omit its discussion here. For trigger state X6 = {0, 3}, however, it

is no longer beneficial for the second item to join the order of the first item, and hence, in

step 2, C(P|P(x) = yJ) > C(P|P(x) = yR), and we stop processing step 2 (i.e., we “break”

the second step). Note that at this point in time, yR = yM = Y6 = {7, 3}, and X ′ still

contains trigger states X1 = {0, 8}, X2 = {0, 7}, X3 = {0, 6}, X4 = {0, 5}, X5 = {0, 4}, and

X6 = {0, 3}. From Theorem 2 it follows that the second item will no longer join the order

triggered by the first item in any of the remaining trigger states in X ′. In each of the trigger

states, however, we still need to: (1) verify the best order-up-to level of the first item, and

(2) determine whether it is beneficial to return excess inventory for the second item. In case

of trigger state X6 = {0, 3}, the can-order policy P cannot be improved (i.e., we transition

to initial state yM = Y6 = {7, 3}), and after it is processed, it is removed from subset X ′. In

case of trigger states X4 = {0, 5} and X5 = {0, 4}, however, the order-up-to level of the first

item is reduced to 6; i.e., yM (the best initial state in which we can end up if we maintain the

inventory of the second item) equals {6, 5} and {6, 4}, respectively. There are no changes

(when compared to the can-order policy P) for the other, remaining trigger states, and we

finish step 3. After step 3 has been completed, we have processed all trigger states where

the first item triggers the order. What remains to obtain P ′ is to also process all trigger

states where the second item triggers the order. Last but not least, P ′′ is then obtained by

running Algorithm 1 a second time, using policy P ′ as the initial policy.

In a second example we extend the same numerical setting with a third item with param-

eters λ3 = 30, h3 = 30, and k3 = 7. The best conventional can-order policy for this example
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Figure 2: Generalized can-order policy obtained using Algorithm 1. Each panel shows the
policy when item 1 (left panel), item 2 (middle), or item 3 (right) triggers the order. The
color of the cell determines whether other items join the order or not. The numbers inside
the cells represent the respective order-up-to levels of the three items. The can-order levels
of the best conventional can-order policy P are indicated by the dashed lines.
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has s = {0, 0, 0}, c = {2, 2, 4}, and S = {6, 7, 7}, and a total cost of 513.56. The generalized

policy P ′ obtained by Algorithm 1 has a slightly lower cost of 512.70. We cannot guarantee

that P ′ is optimal, as a brute-force approach would require the evaluation of 512192 policies;

our greedy algorithm only has to evaluate 5,666 policies. The best conventional and the best

generalized can-order policies are illustrated in Figure 2. Each panel shows the generalized

policy when item 1 (left panel), item 2 (middle), or item 3 (right) triggers the order. The

color of the cell determines whether other items join the order or not. The numbers inside

the cells represent the respective order-up-to levels of the three items. For instance, if item

1 triggers the order while items 2 and 3 each have 2 units in inventory, they are jointly

ordered up to respectively 6 (item 1), 7 (item 2), and 8 (item 3). The can-order levels of the

best conventional can-order policy P are indicated by the dashed lines. The figure shows

how the generalized can-order policy differs from the conventional can-order policy. The

numbers printed in white indicate negative orders. A negative order may be optimal when,

for instance, the demand for a particular item i was far less than expected, and another item

j 6= i triggers a replenishment order that results in high inventory levels for all items. In such

a situation, it may be beneficial to get rid of some of the inventory of item i in order to not

incur the holding cost during the long time until the next replenishment order is triggered.

We note that the model complexity is the same whether we include negative orders or

not. The reason why we have included negative orders in the analysis is motivated by the

observation that the optimal policy can include negative orders. We have also run our greedy
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Table 5: Parameter values of the three instances of Federgruen et al. (1984)
Parameter item 1 item 2 item 3 item 4

Instance 1
λi 10 5 10 5
hi 1 1 2 1
ki 3 3 3 3
K 33

Instance 2
λi 10 5 10 5
hi 1 1 2 1
ki 5 5 5 5
K 30

Instance 3
λi 10 5 10 5
hi 1 1 2 1
ki 5 5 5 5
K 15

algorithm without allowing negative orders. The resulting cost is 512.703319 compared to

512.702941 when negative orders are allowed. Although negative orders do exist in the

optimal policy, the cost difference with the optimal policy that does not allow negative

orders is only minimal.

In the third example, we use our embedded Markov-chain method and greedy algorithm

to analyze the instances used in the numerical experiment of Federgruen et al. (1984) with

four items. The parameters of these instances are summarized in Table 5. We optimize

the can-order policy parameters using the decomposition approach proposed by Federgruen

et al. (1984), and evaluate the obtained policy costs using their cost approximations, as

well as exact. Indeed, our embedded Markov-chain model allows the exact evaluation of

their can-order policy, as it requires only 256, 300, and 853 initial states for the three in-

stances respectively. A traditional Markov-chain approach has 34,848, 34,848, and 18,000

states for these three instances, which makes it impractical to compute its steady-state

performance. (it may take hours to calculate the the steady-state distribution; using our

embedded Markov-chain method, we can evaluate the cost of the can-order policies in a few

seconds or less). Federgruen et al. (1984) therefore relies on approximations to evaluate its

cost performance. Table 6 reports the cost performance of the can order-policy with the

parameters obtained by the decomposition heuristic, respectively using the cost approxima-

tions proposed in Federgruen et al. (1984) and its exact cost evaluation using our method.

We also report the cost performance of the best conventional can-order policy. Finally we

report the cost performance of the best generalized can-order policy, which we found by
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Table 6: Cost performance of the can-order policy identified by the decomposition approach,
evaluated with the cost approximation in Federgruen et al. (1984) or evaluated using our
exact approach, the best conventional can-order policy, and the best generalized can-order
policy. The percentages indicate the difference with the best generalized can-order policy.

Decomposition Decomposition Best Best
(approx. eval.) (exact eval.) can-order generalized

Instance 1 88.71 (14.66%) 81.03 (4.74%) 77.51 (0.19%) 77.36
Instance 2 89.98 (11.45%) 83.62 (3.58%) 80.87 (0.17%) 80.73
Instance 3 71.53 (6.05%) 68.52 (1.58%) 67.80 (0.53%) 67.45

applying our greedy algorithm.

We find that the exact cost evaluation of the can-order policy identified by the decom-

position approach performs extremely well, especially compared to the cost approximation

initially proposed by Federgruen et al. (1984). Among others, this implies that it is not the

decomposition approach that performs bad, but rather the cost approximation that is used

to evaluate their can-order policy. Our results provide evidence that application of the de-

composition approach provides decent results to instances where an exact evaluation remains

infeasible. We also find that the best conventional can-order policy performs close to the

generalized can-order policy. The generalization of the can-order policy differs only slightly

from the conventional can-order policy and thus provides only marginal improvements. The

conventional can-order policy, when applied with the optimal parameter set, performs very

well.

6 Generalization of the decomposition approach

The decomposition approach proposed by Federgruen et al. (1984) decomposes the N -

item problem into N independent single-item problems where, for each item i, discounted

order opportunities arrive at a rate µi. Whereas Federgruen et al. (1984) rely on a cost

approximation to optimize the parameters of the can-order policy, our method is capable to

evaluate the costs in an exact way. Algorithm 2 shows how the can-order policy parameters of

the N single-item problem are iteratively optimized using our exact cost evaluation method,

where each single-item problem is considered as a two-item system consisting of item i and

a virtual item j with parameters cj = 0, Sj = 1, λj = µi, hj = 0, and kj = −K.

Note that Algorithm 2 differs from the decomposition approach reported in Federgruen

et al. (1984). Whereas the latter uses an approximate cost function to evaluate and optimize

the N single-item problems, Algorithm 2 evaluates the cost function in an exact manner using

22

http://dx.doi.org/10.1016/j.ejor.2022.02.005
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2022.02.005 • www.stefancreemers.be • info@stefancreemers.be

Algorithm 2: Exact decomposition approach with N single-item problems

Initialize P , the can-order policy where Si = Qi, and ci = 0, for all i ∈ N;
Initialize µi using same logic as in decomposition approach for all i ∈ N;
do

Let done = true;
forall the i ∈ N do

Let Pi denote the two-item can-order policy with parameters c1 = ci, c2 = 0,
S1 = Si, S2 = 1, λ1 = λi, λ2 = µi, h1 = hi, h2 = 0, k1 = ki, and k2 = −K;
forall the S ′i ≤ Qi do

forall the c′i < S ′i do
Let P ′i denote the two-item can-order policy with parameters c1 = c′i,
c2 = 0, S1 = S ′i, S2 = 1, λ1 = λi, λ2 = µi, h1 = hi, h2 = 0, k1 = ki, and
k2 = −K;
if C(P ′i) < C(Pi) then

Let ci = c′i, Si = S ′i, and Pi = P ′i;
Let done = false;

Update P ;
Update µi using same logic as in decomposition approach for all i ∈ N;

while done = false;

our embedded Markov-chain method described in Section 2. The resulting optimization of

the can-order policy parameters leads to a different, and generally better, can-order policy.

In addition to that, our method is not restricted to the analysis of single-item problems,

as it can evaluate the cost of two (or more) items in an exact way. A straightforward

generalization of the decomposition approach uses N(N−1) two-item problems, rather than

N single-item problems. Algorithm 3 illustrates how for each item i, the can-order policy

that minimizes the costs over all pairs (i, j) : i 6= j ∧ i, j ∈ N is identified; for each pair the

three-item system —with a virtual third item representing discounted order opportunities—

is analyzed using our embedded Markov-chain method. In a similar way we could also

consider N(N−1)(N−2) three-item problems, etc. As the multi-item problems are a better

approximation of the N -item problem than a single-item problem, we expect the resulting

can-order policies to be closer to the best can-order policy.

Table 7 summarizes the results of this approach to find the best can-order policy for the

instances considered in Federgruen et al. (1984). The table reports the cost performance,

obtained in an exact way using our embedded Markov-chain method, of the conventional

decomposition approach of Federgruen et al. (1984) that relies on an approximate cost

function to optimize the can-order policy parameters; the exact decomposition approach

described by Algorithm 2 that relies on the exact cost evaluation to optimize the single-item
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Algorithm 3: Exact decomposition approach with N(N − 1) two-item problems

Initialize P , the can-order policy where Si = Qi, and ci = 0, for all i ∈ N;
Initialize µij using same logic as in decomposition approach for all i, j ∈ N;
do

Let done = true;
forall the i ∈ N do

Let Cij = 0;
forall the j ∈ N \ {i} do

Let Pij denote the three-item can-order policy with parameters c1 = ci,
c2 = cj, c3 = 0, S1 = Si, S2 = Sj, S3 = 1, λ1 = λi, λ2 = λj, λ3 = µi,
h1 = hi, h2 = hj, h3 = 0, k1 = ki, k2 = kj, and k3 = −K;
Cij = Cij + C(Pij);

forall the S ′i ≤ Qi do
forall the c′i < S ′i do

Let C ′ij = 0;

forall the j ∈ N \ {i} do
Let P ′ij denote the three-item can-order policy with parameters
c1 = c′i, c2 = cj, c3 = 0, S1 = S ′i, S2 = Sj, S3 = 1, λ1 = λi, λ2 = λj,
λ3 = µi, h1 = hi, h2 = hj, h3 = 0, k1 = ki, k2 = kj, and k3 = −K;
C ′ij = C ′ij + C(P ′ij);

if C ′ij < Cij then
Let ci = c′i, Si = S ′i, and Pij = P ′ij;
Let done = false;

Update P ;
Update µij using same logic as in decomposition approach for all i, j ∈ N;

while done = false;
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Table 7: Cost performance (all evaluated using our exact approach) of the can-order poli-
cies obtained using different decomposition approaches. The conventional decomposition
approach relies on a cost approximation to optimize the policy parameters. The exact de-
composition approaches (single-item, two-item, and three-item) rely on an exact evaluation
of the costs to optimize the policy. The number between brackets represents the percentage
deviation from the best can-order policy.

Decomposition Exact Decomp. Exact Decomp. Exact Decomp. Best
(exact eval.) (single-item) (two-item) (three-item) can-order

Instance 1 81.03 (4.54%) 80.07 (3.30%) 78.10 (0.76%) 77.97 (0.59%) 77.51
Instance 2 83.62 (3.51%) 82.66 (2.22%) 82.16 (1.59%) 81.27 (0.49%) 80.87
Instance 3 68.52 (1.05%) 68.70 (1.33%) 68.04 (0.34%) 67.96 (0.24%) 67.80

problems; the exact decomposition approach described in Algorithm 3 considering two-item

problems; the exact decomposition approach considering three-item problems; and the best

can-order policy. Table 8 reports the corresponding can-order policy parameters obtained

using the different decomposition approaches. It shows how our extended decomposition

approach approximates the best can-order policy parameters better than the conventional

decomposition approach, thereby reducing the gap with the best can-order policy to below

1%.

7 Extensions of the model

The DTMC analysis described in Section 2 assumes that orders are instantaneously received

in inventory and inventories of all items are non-negative. In what follows, we illustrate a

number of extensions of the base case. We limit ourselves to the discussion of: (1) backlog,

(2) lost sales, (3) compound Poisson demand, and (4) nonzero lead times. Interestingly, none

of these extensions increase the number of initial states. Among others, this means that the

complexity of the problem remains the same no matter the extension. This contrasts with a

traditional Markov-chain approach that requires more states for any of the extensions (and

hence requires inversion of a bigger matrix in order to calculate the steady-state distribution).

7.1 Backlog

In case of backlog, the inventory of item i is allowed to drop below zero, and backlog costs bi

are incurred per unit of time. The cumulative inventory costs Hy in Eq. (6) are then defined

by Hy = H+
y +H−y , with H+

y the expected cumulative holding costs and H−y the cumulative
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Table 8: Optimized can-order policy parameters obtained by the different decomposition
approaches.

Instance 1 Instance 2 Instance 3
S c S c S c

Decomposition
22,15,17,15 14, 9,11, 9 23,15,17,15 12, 8,10, 8 18,12,13,12 7,5,6,5

(exact eval.)
Exact Decomp.

17,11,13,11 8, 5, 6, 5 18,12,14,12 8, 5, 6, 5 16,11,12,11 5,3,4,3
(single-item)

Exact Decomp.
17,11,14,11 10, 6, 8, 6 18,12,14,12 9, 5, 7, 5 16,11,12,11 6,4,5,4

(two-item)
Exact Decomp.

17,11,14,11 11, 6, 9, 6 18,12,15,12 10, 6, 8, 6 15,11,12,11 6,4,5,4
(three-item)

Best
18,11,16,11 13, 7,11, 7 18,11,16,11 12, 7,11, 7 15,10,12,10 7,4,6,4

can-order

backlog costs. The expected cumulative holding costs are given by:

H+
y = λ−1N

X∑
x=1

Pyx∆yx

(
N∑
i=1

I+yxihi

)
, (7)

with I+yxi the expected inventory of item i when moving from initial state y to trigger state

x:

I+yxi =


I ′xi +

Iyi − I ′xi
2

if Iyi > 0 ∧ Iyi ≥ Ixi ∧ I ′xi ≥ 0,

Iyi (Iyi + 1)

2 (Iyi − I ′xi + 1)
if Iyi > 0 ∧ Iyi ≥ Ixi ∧ I ′xi < 0,

0 otherwise.

(8)

The expected cumulative backlog costs are given by:

H−y = λ−1N

X∑
x=1

Pyx∆yx

(
N∑
i=1

I−yxibi

)
, (9)

where I−yxi is the expected backlog of item i when moving from initial state y to trigger state

x:

I−yxi =



I ′xi (I
′
xi − 1)

2 (Iyi − I ′xi + 1)
if I ′xi < 0 ∧ Iyi ≥ Ixi ∧ Iyi > 0,

I ′xi − Iyi
−2

− Iyi if I ′xi < 0 ∧ Iyi ≥ Ixi ∧ Iyi ≤ 0,

0 otherwise.

(10)
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Table 9: Steady-state probability, expected transition time, expected cumulative holding
cost, expected cumulative backlog cost, and expected lost sales cost for all y : y ∈ Y

y πy Ty H+
y H−y Wy

{7, 8} 0.8460 9/28 75.4559 6.9813 54.4933
{7, 7} 0.0027 8/28 63.8323 6.8208 54.1629
{7, 6} 0.0074 7/28 53.1111 6.6721 53.6426
{7, 5} 0.0151 6/28 43.3335 6.5420 52.9748
{7, 4} 0.0254 5/28 34.5218 6.4358 52.2311
{7, 3} 0.0372 4/28 26.6800 6.3561 51.5017
{6, 8} 0.0219 8/28 68.6207 7.1952 54.9339
{5, 8} 0.0442 7/28 61.8342 7.4302 55.0366

To illustrate how to model backlog, we revisit the best can-order policy of the example

introduced in Section 2, and assume that items re-order if the inventory level hits −2. In

addition, we have hb1 = hb2 = 100. The expected cumulative holding and backlog cost are

H+ = 133.5324 and H− = 13.0584, respectively. For each initial state y : y ∈ Y , Table 9 lists

the: (1) steady-state probability, (2) expected transition time, (3) the expected cumulative

holding cost, and (4) the expected cumulative backlog cost.

7.2 Lost sales

In case of lost sales, the inventory of item i is not allowed to drop below zero, and a cost wi

is incurred for each unit of unmet demand. The cost of lost sales is given by:

Wy =
X∑
x=1

Pyx

N∑
i=1

max {0,−Ixi}wi, (11)

and may be integrated in the total cost function Eq. (6) as follows:

C(P) =

Y∑
y=1

πy (Oy +Hy +Wy)

Y∑
y=1

πyTy

, (12)

with Hy = H+
y defined above in (7).

If we revisit the example, and assume w1 = w2 = 25, the costs of lost sales amount to

101.9418. Table 9 also reports the expected lost sales cost for each initial state y : y ∈ Y .
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7.3 Compound Poisson demand

In case of compound Poisson demand, the demand for item i can be any integer number of

units u with distribution function fi (u). Unfortunately, we can no longer use the multinomial

distribution to determine Pyx. Instead, for each initial state y, we define a CTMC that has

initial state Yy and absorbing states X . Using this CTMC, we can once more determine:

(1) Pyx, (2) Ty, and (3) Hy.

For instance, consider the example system, and imagine that both items face a compound

Poisson demand with f1(1) = f1(2) = f2(1) = f2(2) = 1/2 (i.e., both items face a demand

of either 1 or 2 units, both with a 50% probability). In addition, we assume that an order

is triggered as soon as the inventory of an item depletes. Next, we focus on initial state

Y6 = {7, 3}. The CTMC associated with Y6 = {7, 3} has absorbing states X1 = {0, 3}, X2 =

{−1, 3}, X3 = {0, 2}, X4 = {−1, 2}, X5 = {0, 1}, X6 = {−1, 1}, X7 = {7, 0}, X8 = {7,−1},
X9 = {6, 0}, X10 = {6,−1}, X11 = {5, 0}, X12 = {5,−1}, X13 = {4, 0}, X14 = {4,−1},
X15 = {3, 0}, X16 = {3,−1}, X17 = {2, 0}, X18 = {2,−1}, X19 = {1, 0}, and X20 = {1,−1}.
The CTMC is given in Table 10, and allows us to determine P6,x and P6 (z), where z is a

transient state (i.e., a state that is visited only once; {7, 3}, {7, 2}, and {7, 1} are example

transient states). In turn, probabilities P6 (z) can be used to determine both T6 as well as

H6. For instance, the probability to visit state {7, 3} is P6 ({7, 3}) = 1. We expect to stay

λ−1N time units in state {7, 3}, and hence, its contribution to T6 equals P6 ({7, 3})λ−1N = 1/28.

Analogously, we can determine its contribution to H6 as P6 ({7, 3})λ−1N (7h1 + 3h2) = 153/28.

In general, for initial state y, we have:

Ty = λ−1N

Z∑
z=1

Py (z) , (13)

Hy = λ−1N

Z∑
z=1

Py (z)
N∑
i=1

Izihi, (14)

where Z denotes the number of transient states, and Izi the inventory of item i in transient

state z.

7.4 Nonzero lead times

Let L denote the lead time. In what follows, we assume that L is deterministic. Note,

however, that it is possible to model L as a random variable. We assume that only one order

can be outstanding at any point in time. In order to determine the steady-state distribution

π, we introduce transient state z ∈ {1, 2, . . . , Z}, in which we end up after an order has
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arrived. Next, define Pyz, the probability to transition from an initial state y to a transient

state z (where (λL)m e−λL (m!)−1 is the probability of having m successes in an interval of

length L given a Poisson process with rate parameter λ):

Pyz =


N∏
i=1

(λiL)(Iyi−Izi) e−λiL

(Iyi − Izi)!
if Iyi ≥ Izi ∀i ∈ N,

0 otherwise.

(15)

Note that, in any initial state y : y ∈ Y , an order is always on its way (hence, after arrival of

the order in transient state z, item i has incurred a demand of Iyi−Izi units, where Izi is the

inventory level of item i in transient state z). Next, define Pzx, the probability to transition

from transient state z to trigger state x. If, for any x : x ∈ X , Izi = Ixi for all i : i ∈ N,

Pzx = 1 and Pzx′ = 0 for all x′ : x′ ∈ X \ {x}. If no such trigger state x can be found, Pzx

may be defined as follows (once more using the multinomial distribution):

Pzx =


(∆zx − 1)!∏N
i=1 (Ixi − I ′xi)!

N∏
i=1

(
λi
λN

)(Izi−Ixi)

if Izi ≥ Ixi ∀i ∈ N,

0 otherwise,

(16)

where ∆zx =
∑N

i=1 (Izi − Ixi). Pyx may now be obtained as Pyz
∑X

x=1 Pzx.

The expected time until the subsequent order associated with initial state y is given by:

Ty = L+ λ−1N

Z∑
z=1

Pyz

(
X∑
x=1

Pzx∆zx

)
. (17)

In addition, define Hzx, the expected cumulative holding cost when making a transition

from transient state z to trigger state x:

Hzx =


0 if Izi = Ixi∀i ∈ N,

λ−1N ∆zx

N∑
i=1

(
I ′xi +

Izi − I ′xi
2

)
hi otherwise.

(18)

In addition, let Hx denote the expected cumulative inventory and backlog cost from the

moment an order is triggered in trigger state x until the next order:

Hx = L
Z∑
z=1

PP(x)z

(
N∑
i=1

(
I+xzihi + I−xzihb

))
, (19)

30

http://dx.doi.org/10.1016/j.ejor.2022.02.005
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2022.02.005 • www.stefancreemers.be • info@stefancreemers.be

Table 11: Steady-state probability, expected transition time, expected order cost, and ex-
pected cumulative holding and backlog costs for all y : y ∈ Y in case of nonzero lead time

y πy Ty Oy Hy

{7, 8} 0.6506 0.4267 47.6402 59.9705
{7, 7} 0.0119 0.3885 48.8153 50.2738
{7, 6} 0.0249 0.3447 49.5270 41.2983
{7, 5} 0.0401 0.2956 49.6968 33.1138
{7, 4} 0.0550 0.2422 49.3294 25.8144
{7, 3} 0.0678 0.1865 48.5414 19.6236
{6, 8} 0.0609 0.3942 46.0734 53.6146
{5, 8} 0.0888 0.3517 43.6824 46.9865

where I+xzi and I−xzi are the expected cumulative inventory and backlog of item i when making

a transition from trigger state x to transient state z, respectively (obtained in analogy with

Eq. (8) and Eq. (10)). Next, the expected cumulative inventory and backlog costs associated

with initial state y may be obtained as follows (note that lost sales, rather than backlog, can

also be modelled):

Hy =

(
X∑
x=1

PyxHx

)
+

(
Z∑
z=1

Pyz

(
X∑
x=1

PzxHzx

))
. (20)

If, in the example, we assume a lead time L = 2λ−1N = 1/14, the holding and backlog costs

amount to 135.8784. Table 11 presents the steady-state probability, the expected transition

time, the expected order cost, and the expected cumulative holding and backlog costs for all

y : y ∈ Y .

8 Conclusions

We present an exact and efficient solution procedure that is novel to the inventory manage-

ment (and by extension the joint replenishment) literature. Alternative exact methods rely

on conventional Markov-chain analysis to evaluate inventory policies, combined by a search

procedure to optimize the policy parameters, or relies on Markov decision processes to iden-

tify the optimal policy. Thanks to the substantial reduction in state space, our method allows

an exact analysis for instances that until now could only be evaluated using approximation

procedures. We also characterize the optimal joint replenishment policy as a generalization

of the can-order policy. We find that the conventional can-order policy, when used with the

optimal parameter set, performs very well. Our embedded Markov-chain model now makes

it possible to identify this optimal parameter set due to its exact cost evaluation. Although
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our method is not capable to solve instances with a large number of items, we provide an

excellent heuristic that improves and extends the conventional decomposition approach and

we demonstrate its good performance. Future research can be devoted to other inventory

management applications that can benefit from our Markov-chain analysis, or applications

of joint replenishment in other environments, such as dual transport mode problems.
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Creemers, S., G. Woumans, R. Boute, J. Beliën. 2017. Tri-Vizor uses an efficient algorithm to identify
collaborative shipping opportunities. INFORMS J. Appl. Anal., 47(3), 195–277.

Federgruen, A., H. Groenevelt, H. C. Tijms. 1984. Coordinated replenishments in a multi-item inventory
system with compound Poisson demands. Management Sci., 30(3), 344–357.

Feng, H., Wu, Q., Muthuraman, K., Deshpande, V. 2014. Replenishment policies for multi-product stochas-
tic inventory systems with correlated demand and joint-replenishment costs. Prod. Oper. Management,
24(4), 647–664.

Goyal, S. K., A. T. Satir. 2008. Joint replenishment inventory control: Deterministic and stochastic models.
Eur. J. Oper. Res., 38(1), 2–13.

Ignall, E. 1969. Optimal continuous review policies for two product inventory systems with joint setup
costs. Management Sci., 15(5), 278–283.
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