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Abstract - We study the integration of order acceptance and capacity planning
in multi-project environments with dynamically arriving projects. We model
this planning problem as a continuous-time Markov decision process to deter-
mine long-term optimal decisions. We examine whether macro-process planning
should be performed before or after order acceptance. We characterize the struc-
ture of optimal policies, and explore the dependence on a number of parameters
such as project payoff, project cost, and order arrival time. We also look into
the effects of setup costs and the use of non-regular capacity.
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1 Introduction

In multi-project environments such as Engineer-to-order (ETO) [5] or research and develop-
ment (R&D) [1, 51], new projects are arriving dynamically. Typically, their content is uncer-
tain and cannot be fully specified in advance. A common problem is the lack of integration
between Order Acceptance (OA), which is typically decided by the sales department, and
capacity planning, which is usually done by the engineering or production department [60].
While the sales department tends to try to boost revenues by accepting as many projects as
possible, R&D and/or production often struggle with congestion at highly utilized resources
that are shared by many projects. Long project lead times and unmet due dates are the
result.

Multi-project management often adopts a hierarchical approach to planning because the
time scale and complexity of the projects can be considerable. As outlined by Hans et
al. [20], a hierarchical planning process performs a preliminary analysis upon arrival of an
order/project, which is referred to as Macro-Process Planning (MPP). In MPP, a number
of characteristics of the order are established, e.g., the approximate work content of specific
work packages, the most important precedence constraints, aggregate resource requirements,
etc. Obviously, MPP is already a complex task, which usually has to be performed under
considerable urgency: potential customers expect a quick response as to whether or not their
order is accepted. If MPP is performed after OA, there is less urgency, and costs can be
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saved. In this case, however, the output of MPP is not available when making the decision
whether or not to accept an order.

The results of MPP are used in a Rough-Cut Capacity Planning (RCCP) step, where
macro activities (work packages) are allocated to resources that are typically larger organi-
zational units such as departments. One important aspect of the capacity plans is that they
help to assess the consequences of a new order with respect to resource utilization, and thus
support optimal OA decisions. To the best of our knowledge, the incorporation of the effect
of possible future arrivals of new orders into the planning process has not yet been studied.

This work has been inspired by a collaboration with a large supplier of automotive compo-
nents, with multiple R&D departments. We worked together with the department in charge
of modification projects for combustion engine control units. Requests for such projects
arrive from internal and external customers. The company operates the R&D department
in a market setting where internal orders don’t have to be processed but can be outsourced
instead; at the same time the department also provides engineering services for external
customers. Hence, the department has the option to accept or reject order requests. The
department employs a number of specialized resources, in particular one piece of testing
equipment which basically acts as the main bottleneck resource and thus determines the
flow time of projects.

The company contacted us because due to an increasing demand for modifications of
combustion engine control units, the arrival rate as well as the revenue of projects had
increased and the R&D department tended to accept too many orders which led to overly
long flow time of projects and to too many projects in the system. After initial discussions on
how to approach the planning problem, the company explicitly opted for a planning approach
where each project would be aggregated to the work which had to be done on the testing
equipment. A detailed approach where each project would be depicted as an activity network
was soon discarded, because the department already had project scheduling software in use
for detailed planning of project activities of accepted projects. This software, however, did
not support OA decisions, nor choices regarding MPP before or after OA.

The contributions of this article are threefold. Firstly, after a literature review, we
model the integrated order acceptance and capacity planning problem as a Continuous-
Time Markov Decision Process (CTMDP). The basic model allows to determine long-term
optimal decisions for OA and RCCP. Furthermore, we examine whether MPP should be
performed before OA such that OA can take full advantage of the information obtained from
MPP. Alternatively, MPP is performed afterwards, such that only basic information from
the order is available for OA. As a second contribution, we characterize optimal policies
and explore their dependence on a number of parameters such as project payoff, project
cost, order arrival time, etc. Finally, we propose two extensions to the basic model. A
first extension enables the use of non-regular capacity such as overtime to accelerate the
processing of projects. A second extension allows for the incorporation of setup costs. Even
though our models do not capture all complexities of a real-world multi-project environment,
they provide insight in the dynamics of OA and MPP. These insights have been used by one
of the R&D departments of a large supplier of automotive components.
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2 Literature review

The relevant literature draws from two related fields: capacity planning and order acceptance.
In what follows, we use the term dynamic to indicate that orders/projects arrive over time
(analogously to the stochastic knapsack problem [28]). The term static, by contrast, refers
to the setting where all projects are available at the start of the planning horizon.

2.1 Project scheduling and capacity planning

The literature on project scheduling deals with the scheduling either of a single project or
of multiple projects. In this work we look into multi-project planning, and so we do not
cover the single-project literature (for a survey, see [42]). Scheduling multiple projects under
uncertainty has been studied by various authors (see [20] for an overview). The literature
can be partitioned along two different dimensions of the underlying optimization problem:
(1) static vs. dynamic, and (2) deterministic vs. stochastic. Below we focus on stochastic
multi-project scheduling. For static deterministic models for job prioritization and order
release, see for instance Riezebos [48].

For the static stochastic case, an important class of problems are multi-armed-bandit
problems (see [17, 43] for a description). Gittins and Jones [17] were the first to show that
the optimal policy is a priority index rule. For each project, a priority index rule computes an
index value that depends only on the state of the project at the given decision time and does
not depend on the state of other projects. The indices are used for prioritizing the projects
(a project with highest index is selected). An important extension of the multi-armed bandit
problem is the restless bandit problem, which was first considered by Whittle [57]. For the
restless bandit problem, the optimal policy is not necessarily a priority index rule anymore.
Kavadias and Loch [26] schedule multiple projects at a single bottleneck resource under more
general assumptions than the multi-armed bandit case, such that it becomes a restless bandit
problem. They find that under specific conditions the optimal policy is again a priority index
rule.

Scheduling in dynamic and stochastic multi-project environments has mostly been consid-
ered in the context of queueing networks. Dependent on the models’ assumptions, different
policies have been shown to be optimal for the special case of queueing systems that consist
of a single station. Cox and Smith [8] show that the cµ-policy is optimal for an M/G/1
system with different project types to minimize average cost per unit time, where c denotes
the holding cost per unit of time of a project type and µ the service rate for the respective
project. For the more general M/G/1 system with feedback, i.e., where projects can revisit
the system after being served while changing type with a given probability, Klimov [30]
proves that a priority index rule is optimal.

Adler et al. [1] and Levy and Globerson [32] adapt classic queueing networks to a project
setting by allowing queues to have multiple successors (by using forks) and multiple pre-
decessors (by using joins). Based on these models, Cohen et al. [7], as well as Melchiors
and Kolisch [38], analyze the performance of priority rules using simulation. Melchiors and
Kolisch [39] also propose a CTMDP for the computation of optimal scheduling policies. From
a more practical perspective, Hutter et al. [23] describe how they successfully implemented
an order-release mechanism in a job-shop-like environment by limiting the workload in the
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manufacturing system and thus controlling flow times.
Models dedicated to tactical RCCP comprise both scheduling decisions as well as decisions

related to capacity deployment. RCCP in static and deterministic environments has been
considered by De Boer [10] and Hans [19], for example. In their models, extra “non-regular”
capacity can be used in order to process more project activities at a time, or to reduce the
duration of an activity. The latter usage has also been referred to as crashing and has been
considered by many different authors (e.g., [27, 4, 49]). In dynamic stochastic environments,
activity crashing is closely related to control of services rates. Crabill [9] investigates the
optimal control of service rates for an M/M/1 system, and finds that an optimal policy
is characterized by multiple thresholds on the number of projects in the system. When a
threshold is exceeded, the service rate switches to its next higher value.

Scheduling in the presence of setup times and costs was first considered by Hofri and
Ross [22] for a queueing system with two customer classes. This case was extended to an
arbitrary numbers of customer classes by Liu et al. [33]. Reiman and Wein [47] apply a
heavy-traffic approximation to obtain near-optimal policies for this case.

2.2 Order acceptance

Order acceptance problems have been considered in static as well as dynamic environments.
In static environments, a set of projects is given at the beginning of the planning horizon,
from which a subset has to be selected so as to optimize an objective subject to a set of
constraints. Consequently, OA is mostly referred to as selection in static environments.
Models based on mathematical programming have been proposed by Bard et al. [3] and
Loch et al. [35]. Loch and Kavadias [34] present a more aggregate model that considers the
problem from a financial perspective without explicit consideration of projects as discrete
items. Joint optimization of OA and scheduling decisions in a static context has been
considered by Slotnick and Morton [52] and Talla Nobibon and Leus [54]. For an illustration
of how to integrate order acceptance into aggregate planning for standardized items, we refer
to Brahimi et al. [6].

OA for dynamic environments has been studied in different fields. In multi-project plan-
ning, different models exist that are generalizations of the Dynamic Stochastic Knapsack
Problem (DSKP). A number of variants of the DSKP have been proposed by Ross and
Tsang [50] and Kleywegt and Papastavrou [28, 29]. The basic idea is as follows: given a
single resource with limited capacity, schedule items that arrive dynamically with stochastic
interarrival times and varying demand for capacity. If all resources are in use then the item
must be rejected (i.e., queueing is not allowed).

Perry and Hartman [44] look into OA with a single resource for multiple periods and
for projects that consist of only a single activity. As the capacity is limited in each period,
the problem can be dealt with as a multi-knapsack problem. Herbots et al. [21] extend the
model of Perry and Hartman [44] by allowing more complex resource allocation schemes,
which are typical for RCCP. Although both models are able to take into account stochastic
interarrival times, only deterministic project durations are considered.

OA with stochastic interarrival times and stochastic project durations has been examined
in queueing theory; projects are again typically modeled as only one activity. One of the
first papers is by Naor [41], who considers OA decisions for an M/M/1 system with a
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single project type. A holding cost is incurred per unit of time a project is in the system,
and payoffs are obtained for each accepted project. The average reward is to be maximized.
Generalizations of the basic model to general distributions and multiple capacity units appear
in Yechiali [58, 59], Knudsen [31], and Feinberg and Yang [16]. Feinberg and Yang [16], in
particular, consider an M/M/c system with multiple project types where holding costs,
arrival rates, and payoffs vary between the types, while all project types have the same
expected duration (service rate). For the systems considered, OA policies are monotone,
meaning that an order of each type is accepted until the number of projects in the system
exceeds a threshold that may depend on the project type. However, scheduling decisions
and decisions regarding resource capacities have not been included into the optimization.
Typically, scheduling decisions are made following a FCFS rule.

Joint optimization of OA and scheduling decisions in queueing theory is studied by De
Serres [11, 13]. The author considers an M/M/1 system with two project types where the
expected duration depends on the type, and preemption of projects already in process is
allowed. Based on extensive experimental studies he finds that, for many cases, the optimal
policies exhibit a monotone structure with respect to the OA decisions. The author does
not, however, provide formal proofs for this structure of optimal policies. Furthermore,
although in many cases the cµ-policy has been shown to be optimal for scheduling decisions,
De Serres [13] provides a counterexample when OA is included. Although the work of De
Serres comes closest to our problem, it neglects important issues relevant for OA in multi–
project organizations. Firstly, no decisions with respect to resource capacities are taken into
account. Secondly, it is assumed that all project-related information (except the duration)
is fully known upon arrival. Thirdly, the costs of performing MPP before OA are not taken
into account.

The joint optimization of OA and scheduling has also been investigated on a heuristic
basis. Wester et al. [56] and Van Foreest et al. [55] develop and test (via simulation) different
OA and scheduling heuristics for a system that consists of a single resource that processes
one project at a time. The heuristics are characterized by different levels of detail concerning
the system information used. The case with multiple resource types and projects consisting
of multiple activities has been considered by Ebben et al. [15], Ivanescu et al. [24], and
Ivanescu et al. [25]; the latter two references also allow for stochastic activity durations. A
first version of the model presented in this paper without considering setup costs and idleness
is available in Melchiors [37].

3 Basic model

In the remainder of the text, the term order refers to a request from a customer before OA,
while a project is a request that has been accepted.

3.1 Multi-project environment

Following Adler et al. [1], we focus on the case where projects, although they are unique, have
enough similarities to be categorized into project types p ∈ P . All projects of type p arrive
according to a stochastic Poisson arrival process with rate λp. On completion, a payoff yp is
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obtained. For simplicity of the analysis, we consider only a single resource that can be seen
as the bottleneck resource of the system. This bottleneck has unit capacity: only one project
can be processed at a time (see [26] for a similar modeling choice). Detailed information on
individual activities, such as their resource usage, becomes available only after MPP, and we
therefore assume that the type to which a project belongs is discovered only after MPP has
been performed.

In line with most of the literature, we assume that for each project only a single activity
is to be processed on the bottleneck resource. Furthermore, we also assume that the duration
of the bottleneck activity of a project of type p ∈ P is exponentially distributed with rate µp;
the expected duration is dp = 1

µp
. Without loss of generality, we assume that the duration of

the project equals the duration of the bottleneck activity. During execution on the bottleneck
resource, a cost wE

p is incurred per unit of time. For the activities that are processed on non-
bottleneck resources, a total cost kE

p is incurred. During the stay of the project in the system,
a holding cost wp is incurred per unit of time.

Before performing MPP, less information is available, and only the parent project type
φ ∈ Φ of a project is known. The parent type is known upon arrival of the project. After
MPP has been performed, more information becomes available, and the child project type
p ∈ P of the parent type φ becomes known; by Pφ ⊂ P we will denote the set of child
types corresponding to parent φ. For the case of the engineering department discussed in
the introduction, is is known from the outset if the order request is internal or external and
what modification of the control unit is requested. However, MPP is necessary in order to
translate the modification request in an estimate for the overall time the testing equipment
is needed as well as an estimate on further work not operated on the test equipment. The
arrival rate of projects of parent type φ is λφ =

∑
p∈Pφ

λp.

3.2 Order acceptance and resource allocation

An order arriving at the system may be accepted or rejected with or without performing
MPP beforehand. In the following, we refer to MPP performed before OA as advanced MPP
and to MPP performed afterwards as postponed MPP. Before MPP, only the parent project
type φ is known; through MPP we discover the child project type p ∈ Pφ. Since MPP
requires resources, costs (such as labor costs) are incurred. Let φp ∈ Φ be the parent type
of child project type p ∈ P . For simplicity, we assume that a fixed cost kAM

φp
is incurred for

advanced MPP of a project type p ∈ P , while in the case of postponed MPP a fixed cost
kPM
φp

is incurred. It is realistic to assume that kAM
φp

> kPM
φp

.
Figure 1 illustrates the difference between advanced and postponed MPP. Note that we

ignore the time spent for MPP itself as it is short relative to the duration of the project
and/or the project interarrival time.

To simplify the analysis, we assume that idling the resource is not allowed when there are
waiting projects. When a project is completed, we therefore select a new project for execution
from the queue of accepted projects waiting for the resource. Furthermore, we assume that
only one project may be processed at a time, and that the project in process cannot be
preempted. The latter requirement is realistic since preemptions are often detrimental to
system performance [18, 2].
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(a) Advanced MPP

���������

	
������

�����

����
�������

�
��
����������

�
��������

���
�

���
��
�����

��������

������� ���������

�
p

����

(b) Postponed MPP

Figure 1: Alternative processes depending on the timing of MPP

3.3 Markov decision process

We model the problem as a CTMDP to derive optimal decisions. At any decision time, the

system is fully characterized by its state s =
(
nW,nE

)
, where nW =

(
nW

1 , n
W
2 , . . . , n

W
|P|

)
and

nE =
(
nE

1 , n
E
2 , . . . , n

E
|P|

)
are vectors in which nW

p denotes the number of waiting projects of

type p ∈ P and nE
p is the number of projects of type p ∈ P that are in process. Since we

consider only a single resource that cannot process more than one project at a time, the
elements in nE are either 1 (if the project is in process) or 0, otherwise with 1nE ≤ 1; i.e.,
at most one project can be processed on the bottleneck resource at one time. The state
space S is the set of all feasible states s, and state s0 = ((0, . . . , 0) , (0, . . . , 0)) represents
an empty system. We define the set A(s) of possible decisions for state s ∈ S. A decision
a =

(
δAM, δE

)
∈ A(s) entails vector δAM, which describes OA decisions, and vector δE,

pertaining to capacity allocation. Below, we describe these two vectors in more detail.
In order to reduce the size of the state space, we adopt an idea of Ross and Tsang [50],

and decide in state s ∈ S whether or not we accept an order depending on its project type.
In this way, we do not need to store an additional state variable that keeps track of whether

an order has arrived or not. Thus, vector δAM =
(
δAM

1 , δAM
2 , . . . , δAM

|P|

)
is a vector of binary

variables δAM
p that indicate whether or not the next order is to be accepted:

δAM
p =

{
1 then accept the order if it is of type p,

0 then reject the order if it is of type p.

We distinguish between the following three settings for OA when an order of type p arrives
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(at arrival only the parent type φp is known):

1. If δAM
p′ = 0 for all p′ ∈ Pφp then the order is rejected immediately, and obviously no

MPP is performed. As a result, no costs are incurred and there is no state transition.

2. If δAM
p′ = 1 for all p′ ∈ Pφp then regardless of the detailed project type, the parent type

is accepted, and it is optimal to postpone MPP. A transition occurs to a new state in
which nW

p is increased by 1, and we incur cost kPM
φp

+ kE
p .

3. In all other cases, some p′ ∈ Pφp will be accepted and other types rejected, and we
perform MPP to discover the detailed project type. We incur cost kAM

φp
+ kE

p .

In case of postponed MPP, only the parent type φp will be known at the time of OA.
When a project of type p is completed, a reward yp is obtained, and a new project can be

started. Vector δE =
(
δE

1 , δ
E
2 , . . . , δ

E
|P|

)
is a vector of binary variables δE

p that decide which

project type is to be dispatched for processing on the resource:

δE
p =

{
1 dispatch a project of type p to the bottleneck resource,

0 otherwise.

An optimal decision corresponds to a non-idling policy (see also Meyn [40]), and makes sure
that only one project is processed on the bottleneck resource at any one time. Furthermore,
we assume that a project in process cannot be preempted.

Apart from the immediate transition when a project is completed and another one is
started, the time spent in any other state s ∈ S is exponentially distributed: new orders
arrive at rate

∑
p∈P

λp, and the ongoing project is completed with rate µp. During the time

spent in a state s, several costs are incurred. Let c(s, a) denote the cost incurred per unit of
time spent in state s with decision a (recall that wp and wE

p represent the holding cost and
the bottleneck execution cost per unit of time):

c(s, a) =
∑
p∈P

(
wp · nW

p (s) +
(
wE
p + wp

)
· nE

p (s)
)
.

Define y(s, a, s′) to be the reward obtained upon a transition from state s to s′ through
decision a, which is the payoff yp or the order acceptance cost (i.e., kAM

φp
or kPM

φp
), depending

on the transition. The objective function of a policy π considers the long-term average
reward per unit of time:

g(π) = lim inf
N→∞

E
[
N−1∑
n=0

y(sn, π(sn), sn+1)−
N∑
n=0

c(sn, π(sn)) · τn
]

E
[
N∑
n=0

τ(sn, π(sn))

] , (1)

where E is the expectation operator, n is the state index, π(sn) is the decision made in
state sn that is dictated by policy π, τn is the stay time in state sn, and τ(sn, π(sn)) is the
transition time to move from state sn to state sn+1 after decision π(sn) has been made. We
then seek an optimal policy π∗ = arg max

π∈Π
{g(π)}, where Π is the set of all feasible policies.

Further details of the CTMDP are provided in the Appendix.
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4 Analysis for the base case

In order to investigate the benefit of accepting orders without MPP and the structure of
optimal policies, we consider an over-utilized system where

∑
p∈P

λpdp ≥ 1. In other words,

stability of the system can only be obtained by rejecting some of the incoming orders. In
what follows, we assume that there are two child project types 1, 2 ∈ P of the same parent
project type φp = 1. Based on our experience in one of the R&D departments of a supplier of
automotive components, we define three different cases; the details are provided in Table 1.
In all cases, we assume that postponing MPP reduces the cost of MPP by 50%. For cases 1
and 3, the cost of advanced MPP amounts to 10% of the total per-period cost (except holding
cost) when all projects are accepted, which is kAM

1 +λ1 ·(wE
1 ·d1 +kE

1 )+λ2 ·(wE
2 ·d2 +kE

2 ) = 50.
Given a holding cost wp = 1, a project should remain in the system for at most 20 time
units in order to have a positive contribution to the overall profit of the company. For case
2, the cost of MPP is doubled but non-bottleneck execution costs are lower. Except for their
expected duration, both project types are identical in cases 1 and 2. In case 3, the two
project types also have different execution costs.

In the following analysis we study two different settings. In the first setting, MPP is
regular or inflexible: it is always performed before OA. In the second setting, MPP is
flexible, meaning that it can be performed before or after OA. For the first case, Figure 2(a)
shows the structure of optimal OA decisions depending on the number of projects in the
system: np := nW

p + nE
p , for p = 1, 2. The optimal objective function value is g∗. The

light grey region indicates that with a sufficiently low number of projects in the system,
any project can be accepted without MPP. In the medium grey region, only projects of
type 1 should be accepted. In order to distinguish between projects of type 1 and 2, MPP
is necessary. In the dark region, all newly arriving projects are rejected (i.e., no MPP is
performed). The structure of these OA decisions is in line with De Serres [12], who found
that optimal OA decisions are monotone in the number of projects in the system. In order
to highlight the benefit of flexible MPP, we compare the results with inflexible MPP. By
moving from the inflexible to the flexible setting, the average reward per period increases
by 12%, and the light grey region becomes slightly larger because the benefit of postponed

Parameter Case 1 Case 2 Case 3

(d1, d2) (0.6, 1.4) (0.6, 1.4) (0.6, 1.4)
(w1, w2) (1, 1) (1, 1) (1, 1)
(y1, y2) (70, 70) (70, 70) (70, 70)
(λ1, λ2) (0.5, 0.5) (0.5, 0.5) (0.5, 0.5)
(kE

1 ,kE
2 ) (25, 25) (20, 20) (28, 12)

(wE
1 , w

E
2 ) (20, 20) (20, 20) (28, 12)

kAM 5 10 5
kPM 2.5 5 2.5

Table 1: Problem parameters for the three cases
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MPP outweighs the benefit of additional information obtained from MPP.
Figure 2(b) shows the results for the second case, where we observe a higher benefit for

flexible MPP compared to case 1 (26% higher objective value); the optimal objective value
g∗ also increases compared to case 1, whereas it decreases for regular MPP. In total, less
projects are accepted (because more orders of type 2 are accepted, with higher expected
workload), however, more projects are accepted with postponed MPP (because MPP is
more expensive, although the processing cost for non-bottleneck resources has decreased).
Clearly, the higher the additional cost of advanced MPP (when compared to postponed
MPP), the higher the advantage of flexible MPP. Similar observations can be made when
different parameters are used; we will use the following definition.

Definition 1. Be p1, p2 ∈ Pφ for some φ ∈ Φ. We say that p1 dominates p2 if d1 ≤ d2,
wp1 ≤ wp2, wE

p1
≤ wE

p2
, kEp1 ≤ kEp2, y1 ≥ y2, and at least one inequality is strict.

If a dominant project type exists, then typically there will be a set of values (n1, n2) for
which the dominant type will be accepted and the dominated type rejected. This is in line
with the literature on OA, where a threshold of projects is found to be optimal.

Finally, we consider the third case, where a dominance relationship as described above
does not exist. Figure 2(c) shows the corresponding OA decisions. In the third case, the
average reward is about 12.7% higher for flexible MPP. MPP is never performed before OA
as newly arriving projects of both types are always accepted. When MPP is postponed, we
notice that the acceptance region becomes slightly larger. The smaller cost for postponed
MPP allows for a higher holding cost without becoming unprofitable.

In all three of the foregoing cases, the allocation of projects to the bottleneck resource
is in line with a cµ-policy, which confirms the findings of De Serres [12] for the case with
preemptions. We have also shown that the value of information from MPP before OA is
used to discriminate between heterogeneous project types. This indicates that the hetero-
geneity of project types may have an impact on the benefit of flexible MPP. In order to
further investigate this potential impact, we have extended the second case and used the
following combinations of expected durations: (1; 1) (no heterogeneity), (0.6; 1.4) (medium
heterogeneity) and (0.2; 1.8) (high heterogeneity). Figure 3 shows the results. We observe
that the benefit of flexible MPP decreases slightly as heterogeneity increases. This can be
explained by the fact that MPP is performed more frequently before OA for more heteroge-
neous projects. Similar observations can be made for heterogeneous payoffs or holding costs,
as long as there is a dominance relationship.

To summarize our findings, we note that postponed MPP may have considerable benefit,
depending on the difference in cost with regular MPP. Furthermore, the structure of the
OA decisions remains monotone for most cases while the acceptance regions change. As
long as there is a dominance relationship between project types, the acceptance region of
the dominated project type is contained in the acceptance region of the dominating project
type. Finally, in our experiments, optimal resource allocation decisions follow a cµ-policy.
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Figure 2: Optimal OA decisions
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Figure 3: Benefit of postponing MPP

5 Extensions

In this section we consider two extensions of the basic model. First we allow for non-regular
capacity to be used to process projects, and second we investigate the impact of setup costs
that are incurred when switching from one project type to another. The corresponding
generalizations of the CTMDP are commented in Section 6.2 in the Appendix.

5.1 Non-regular capacity

Since we consider a problem at the tactical planning level, we assume that non-regular
capacity is available [19, 21]. Non-regular capacity may be used to process multiple projects
at a time [44], or to crash a project, in the sense that it is processed in less time [27]. In the
case of the engineering department, engineers can work to some extend longer hours and by
this, the duration of the projects is shortened. Hence, we consider the second alternative.
Be δC a continuous variable with 0 ≤ δC ≤ 1 describing the amount of non-regular capacity
that is invoked to reduce the duration of the project in process at the bottleneck resource.
A decision a then takes the form:

a =
(
δAM, δE, δC

)
. (2)

We assume the service rate to be linearly dependent on δC: the rate corresponds to µp(1 +
zp · δC), where zp is the maximum increase of the service rate, obtained with full usage of
the non-regular capacity. Non-regular resource usage incurs additional costs wCδC per unit
of time that a project is processed in “crashed” mode; this is common in many areas such
as service organizations [14, 36]. The cost rate c(s, a) per time unit the system is in state s
after selecting decision a then becomes:

c(s, a) =
∑
p∈P

(
wp · nW

p (s) +
(
wE
p + wp

)
· nE

p (s) + wC · δC(a)
)
. (3)
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Figure 4: Benefit of flexible MPP and non-regular capacity

It can be shown that the optimal usage of non-regular capacity is either 100% or 0% when
the cost and service rates are linear in the amount of non-regular capacity that is deployed.
This is in line with a bang bang control [53], where the optimal service rate in a given system
state is always one of the two extreme values of a feasible interval. Lastly, we assume that
the use of non-regular capacity may be changed at any time.

To study the effect of the inclusion of non-regular capacity into the base model, we
consider the second base case of Section 4, and we focus on the following research questions:

1. What is the benefit of non-regular capacity, and how does it interact with the benefit
of flexible MPP?

2. What is the impact on the structure of optimal policies?

In order to investigate the benefit of non-regular capacity, we assume that the service rate can
be increased by at most 50%, so z1 = z2 = 0.5; the cost coefficient wC is set to 15. The benefit
of non-regular capacity is considered at different levels of project heterogeneity (defined by
the difference in expected duration). Figure 4 shows the results when crashing is allowed.
The less heterogeneous the project types are, the more non-regular capacity is beneficial.
Obviously, with more heterogeneous project types, the OA decisions are more selective, and
rule out the less attractive project types. Thus, the expected workload in the system (and
hence the need for crashing projects) decreases. Interestingly, non-regular capacity becomes
more beneficial when flexible MPP is allowed as the option of postponing MPP makes OA
less selective. We have obtained similar observations when payoffs or execution costs are
varied.

Next, we analyze the optimal structure of the optimal policy for the second case. Figure
5(a) shows the optimal decisions with respect to OA and non-regular capacity. Comparing
the OA decisions with those in Figure 2(b), we find that the policy becomes less selective
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(b) Variant of case 2 with z1 = 0 and z2 = 1.5

Figure 5: Optimal OA decisions and resource allocation with non-regular capacity

as more projects are accepted overall, while the basic structure of the OA decisions is very
similar. Non-regular capacity is only used if the number of projects exceeds a threshold.
The more projects are in the system, the higher the pressure to accelerate the processing
of projects in order to reduce holding costs. Finally, we note that the resource allocation
decisions are again in line with a cµ-policy.

We have verified these observations in a number of additional numerical experiments. For
most cases, we find that resource allocation no longer follows the classic cµ-policy because
crashing may lead to a shorter expected duration. In general, we see that when using non-
regular capacity, project type p2 is preferred over project type p1 if:

wp1µp1 < wp2µp2(1 + zp2). (4)

To demonstrate this, we set z1 = 0 and z2 = 1.5 for the second case. Thus, we have:

1

0.6
= 1.667 <

1

1.4
· 2.5 = 1.786. (5)

Figure 5(b) shows the corresponding optimal decisions. We observe that it is almost always
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preferable to employ non-regular capacity, except when there are very few projects of type 2
(and in fact, when there are no projects of type 2 then non-regular capacity is never used).
This can be explained as follows. In our definition of a state, we do not take into account
which project type is currently in process. Thus, if project type 1 is preferred in some state,
there is another state with the same number of projects in the system where a project of
type 2 is still in process. Hence, it makes sense to use non-regular capacity.

Our numerical experiments have shown that these findings also hold for different cases
and different parameter settings. Therefore, we extend Definition 1 by adding zp.

Definition 2. Be p1, p2 ∈ Pφ for some φ ∈ Φ. We say that p1 dominates p2 pointwise if
d1 ≤ d2, wp1 ≤ wp2, wE

p1
≤ wE

p2
, kEp1 ≤ kEp2, y1 ≥ y2, z1 ≥ z2, and at least one inequality is

strict.

5.2 Setup cost

In the literature on order acceptance and capacity planning, setup costs have been studied
by Wester et al. [56] and Van Foreest et al. [55]. Setup costs are also relevant for ETO
projects where the bottleneck resource may be a production department. In the following,
we extend our model to allow for setup costs. We assume that for each project type to be
performed, the bottleneck resource needs to be prepared (thus incurring a changeover cost).
The resource remains set up for one particular project type, reflected in the setup state,
even if the system becomes empty, until projects of another type are allocated. When that
happens, a cost ks

p is incurred if a project of type p is allocated while the previous project
was of a different type. We introduce the extra state variable ps to identify the type of the
last-processed project. When allocating a project of type p′, a cost ks

p′ is incurred if ps 6= p′.
Thus, the system state is now fully chacterized by:

s =
(
nW,nE, ps

)
. (6)

Below, we first consider the case where the bottleneck resource cannot be idled when there
are waiting projects. Afterwards, we remove this constraint and briefly discuss the benefit
of allowing idleness.

5.2.1 The case without idleness

The size of the state space increases due to the extra state variable, but the number of
additional states in the CTMDP can be kept limited. Further extensions such as sequence-
dependent setup costs or sequence-dependent resource constraints can be easily integrated
without further growth of the state space.

To investigate the benefit of flexible MPP in the presence of setup costs, we vary the
setup costs ks

p for the second base case of Section 4. Figure 6 shows the results, with ks
1 = ks

2.
Overall, the average reward decreases with increasing setup costs. At the same time, the
benefit of flexible MPP remains nearly stable, or slightly increases.

In order to assess the effect of setup costs on the structure of the optimal policy, we now
set ks

1 = ks
2 = 15. First we consider the case with regular MPP. Figure 7(a) illustrates the

OA decisions. Obviously, the setup state ps of the bottleneck resource has a considerable
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Figure 6: Benefit of flexible MPP with setup costs for the second case

impact on the shape of the acceptance region. Furthermore, the monotone structure is less
clear. If the bottleneck resource is set up for project type 1 and there are no projects of
type 1 waiting or being processed, then orders of this type are rejected if there are many
projects of type 2 in the system. This is logical: the system needs to be set up for type 2
at the next resource allocation decision, and this decision will be made before the arrival of
the next order because preemptions are not allowed. Then, projects of type 2 are preferred
and “batched” together into larger lots. If the bottleneck resource is set up for project type
2, the policy is even more selective towards orders of type 1 as a setup is always required.
These observations are similar to Wester et al. [56], who find that with setup times (or setup
costs) it is better to accept orders of the same type as those that are already in the system.

Figure 7(b) depicts optimal resource allocation decisions with regular MPP. If the bottle-
neck resource is set up for project type 1, optimal resource allocation decisions again follow
a cµ-policy, where projects of type 2 are only selected if no project of type 1 is in the system.
When the system is set up for project type 2, however, the picture is less clear, but as long
as there are only few projects of type 1 in the system, projects of type 2 are still preferred.
This is in line with Hofri and Ross [22], where the project type p with the larger index wpµp
should be served to exhaustion. At the same time, if the system is set up for the other
project type, there is a threshold on the number of projects of type p before a switch (setup)
is made. Interestingly, there is also a threshold on the number of projects of type 2: if the
number of projects exceeds a certain number, the system switches to type 1 (if available).
This is due to the increasing holding costs for projects of type 1 waiting until completion of
all type 2 projects. Beyond the threshold, it becomes better to process projects with shorter
expected durations (type 1) first.

Next, we briefly analyze the effect of flexible MPP on the structure of the optimal policy
with setup costs. Figure 7(c) represents the optimal OA decisions. Again, the region where
both project types are accepted becomes slightly larger. The acceptance region for type 1
alone, however, is now much smaller. Its shape remains similar but it seems to “dive” into the
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(c) OA decisions with flexible MPP

Figure 7: Results for case 2 with setup costs
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Figure 8: Benefit of idleness for the case with flexible MPP at the presence of setup costs

light grey region. The structure of the resource allocation decisions is not affected compared
to regular MPP.

5.2.2 The case with idleness

Figure 8 shows the average percentage gain obtained by allowing idleness at different levels
of setup costs. Only at low levels of ks

p there is no benefit, but the difference increases
quickly for values of ks

p beyond 10. Idleness is costly, so the savings in setup costs need to be
sufficiently high. The benefit of idle time is lower for flexible MPP. This can be explained
by a higher objective function overall, such that the proportion of setup costs decreases, and
also simply by the lower number of accepted projects (as mentioned supra).

Finally, we briefly consider the effect of idleness on the structure of the optimal pol-
icy. Figure 9 displays resource allocation decisions with regular MPP and ks

1 = ks
2 = 15.

Compared to Figure 7(b) the structure remains very similar, but the white squares now
indicate where idleness is optimal. Obviously, idleness is only optimal as long as the number
of projects waiting of the other type remains below a certain threshold. This confirms the
findings of Hofri and Ross [22], who (with setup times instead of costs) observe that when
the processing times of both project types follow the same distribution, a double threshold
policy is optimal. We see that in this case, it is not optimal to switch the setup state only
if the number of projects of the current project type is zero. This is due to the different
expected durations of the project types. A similar structure occurs for flexible MPP. The
structure of the OA decisions is also not strongly impacted, but allowing idleness makes the
policy more restrictive, in the sense that less projects are accepted, because holding cost can
be reduced via idleness.

We conclude that it is beneficial to opt for idleness if setup costs are sufficiently high.
The effect on the overall structure of an optimal policy is rather small, because idleness is
optimal only for states where the system is near empty.
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Figure 9: Optimal decisions for resource allocation for the second case with setup costs and
regular MPP

6 Conclusions

In this paper, we have investigated the problem of joint order acceptance and capacity
allocation on a bottleneck resource with stochastic interarrival times and stochastic project
durations. Our computational study was initiated by our collaboration with an engineering
department of a supplier of automotive components. In agreement with the company, we
took an aggregated approach to model and analyze the problem which focused on the project
work to be performed on the bottleneck machine. We have proposed a new model based on
a continuous-time Markov decision process where aspects such as the option of postponing
macro-process planning (MPP), usage of non-regular capacity and setup costs are taken into
account.

To gain insights into the benefit of postponing MPP as well as in the structure of optimal
policies, we have performed an extensive computational study. We find that it is worthwhile
to postpone MPP especially when project types are very similar, when no clear dominance
relationship exists and when crashing using non-regular capacity is possible. In these cases,
it is less important to discriminate between project types.

In the absence of setup costs, optimal policies with respect to order acceptance and non-
regular capacity have a monotone structure that makes them amenable to approximations
via heuristics. In many cases, capacity allocation decisions correspond to a cµ-policy. This
simple structure breaks down, however, when setup costs come into play. Resource allocation
decisions are strongly influenced by batching effects, and order acceptance depends on the
current setup state. Thus, more sophisticated heuristics are needed for large-scale instances
with higher numbers of project types. Allowing the bottleneck resource to idle is another
ingredient to improve the performance when setup costs apply.

For more realistic investigations it would be advisable to focus on general distributions
of interarrival times and project durations, since our models assumed the exponential distri-
bution. Furthermore, studying projects with multiple activities and precedence constraints
to be processed on multiple resources would also be a logical next step. Other directions for
future research include interdependent projects, projects that arrive at certain time intervals,
due dates, etc.

19

http://dx.doi.org/10.1080/00207543.2018.1431417
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1080/00207543.2018.1431417 • www.stefancreemers.be • info@stefancreemers.be

Appendix: Details of the Markov decision process

In this Appendix, we present further details of the reformulated continuous-time Markov
decision process (CTMDP). We start with the CTMDP for the base case of Section 4 without
extensions. Subsequently, we show how the extensions of Section 5 are integrated. Lastly,
we address the issue of efficiently identifying an optimal policy.

6.1 CTDMP for the base problem

The CTMDP consists of state variables, decision variables, and a transition function. The
framework has been taken from Powell [45]. The states and decision variables have been
discussed supra; below we provide more information on the state transitions.

A transition from one system state s to a subsequent system state s′ takes place if an
event occurs after making a decision a in system state s. The time to the next event is
exponentially distributed with rate:

β(s, a) =
∑
p∈P

nE
p (s)µp +

∑
p∈P

λp. (7)

Next, we formally state the mappings to the subsequent states upon an arrival or completion
event. In what follows, we use ep for a unit vector of dimension |P| having a value of 1 at
position p and zero for all other positions.

1. Arrival of an order. On arrival of a new order of type p ∈ P that is accepted, the
subsequent system state is given by:

s′ =

{(
nW(s) + epδ

AM,nE(s)
)

if s 6= s0,

(0, ep) if s = s0,
(8)

where s0 = ((0, . . . , 0) , (0, . . . , 0)) represents an empty system. On arrival, as long as
there is a project in process (s 6= s0), an accepted order of type p becomes a project
and is added to the waiting projects. If there is no project in process at system state
s0, the order is immediately allocated to the resource.

2. Completion of a project. The subsequent state is given by:

s′ =

{(
nW(s)− epδE, δE

)
if s 6= s0,

s0 if nW(s) = 0.
(9)

In this case, the project in process is removed from the system and the project given
by δE is allocated. At the end of the transition a fixed payoff yp is obtained.

6.2 Extensions of the CTMDP

For the inclusion of non-regular capacity, the only modification in addition to those outlined
in Section 5.1 is that the rate to the next event is now given by:

β(s, a) =
∑
p∈P

nE
p (s)µp(1 + zp · δC) +

∑
p∈P

λp. (10)
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With respect to setup costs (Section 5.2), a number of changes need to be incorporated.
First, we adopt a new state definition in order to keep track of the setup state of the system.
The state of the system is defined as a triple s = (nW ,nE, p), where p denotes the type of
the project that is currently being processed, or (in case the system is empty/idle) was last
processed. Let SE denote the statespace of the CTMDP with setups (note that SE is larger
than S). Secondly, we need to take into account setup costs when changing the project type
upon dispatching a project. If the system is in setup state p, a setup cost ksp′ is incurred if
the dispatched project is of type p′ 6= p.

6.3 Solution methodology

We address how the structure of the problem can be exploited in order to efficiently determine
an optimal policy. We first establish some fundamental properties.

Theorem 1. Under any stationary policy π, performing OA and capacity planning decisions
in S, the CTMDP with statespace S is unichain.

Proof. It is sufficient to restrict the consideration to the resource allocation decisions made
by a policy. To start we note that, by restricting to non-idling policies, the resource is
always busy after a decision, except if the system is empty: the resource is busy for all states
s ∈ S\{s0}. Furthermore, with non-zero probability, no new project arrives or is accepted
until the system becomes empty, such that system state s0 is accessible from any system
state s ∈ S\{s0}. Conversely, under a policy π, a subset S(π) ⊆ S\{s0} is accessible from
s0 such that all s ∈ S(π) communicate with s0 and S(π)∪{s0} is a recurrent class of states.
Since s0 is accessible from all transient states s ∈ S\S(π), it is the only recurrent class.

For the CTDMP with state space S the above result implies that, for any stationary
policy π, there exists a single g(π) independent from the starting state. Thus, we can apply
policy iteration with value iteration for policy evaluation in order to determine an optimal
policy. For details on these methods, we refer to Puterman [46].

Theorem 2. The CTMDP with state space SE is multichain and weakly communicating.

Proof. We first show that the CTMDP with SE is multichain. We construct a policy with
the following property. As soon as the system is in one of the empty states s0

p = (0,0, p),
only orders of type p are accepted afterwards. Obviously, the system never changes the setup
state anymore and may return only to s0

p with non-zero probability. As a consequence, we
obtain |P| recurrent classes of states.

To prove that the CTMDP is weakly communicating, we construct a policy that accepts
orders of any type until the maximum number of projects in the system has been reached.
Since the policy accepts projects of all types, any state s ∈ SE can be accessed as long as
λp > 0 for all p ∈ P . To see this, we construct a sample path that starts from state s0

p.
Assume that a project of type p arrives first (thus it must be immediately allocated to the
resource). Afterwards, arriving projects of each type p ∈ P are waiting while the first project
is being processed. It is clear that each state s0

p′ with λp′ > 0 must be accessible from s0
p

as there exists a sample path with non-zero probability where only orders of type p′ arrive
until the system becomes empty again (ending up in s0

p′). Clearly, s0
p is accessible from s0

p′ if
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λp > 0. Thus, the states s0
p for all p ∈ P with λp > 0 are communicating and there exists a

single recurrent class of states under such a policy.

The multichain property implies that there exist policies where g(π) depends on the
starting state of a sample path. As the CTMDP is also weakly communicating, however, it
can be shown that there exists an optimal policy π∗ with a single g(π∗), which is independent
from the starting state (cf. Puterman [46]). This implies that intermediate policies in policy
iteration may have multiple g(π), whereas the optimal policy has a single g(π∗). One option
in this case would be to apply an adaptation of policy iteration where intermediate policies π
are modified to obtain a single g(π) [46]. We have found that it is sufficient for our problem to
abort value iteration after a given number of iterations instead of iterating until convergence
to a single value.
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