
doi:10.1007/s10951-016-0505-x • www.stefancreemers.be • info@stefancreemers.be

New strategies for stochastic resource-constrained

project scheduling

Salim Rostami
Stefan Creemers

Roel Leus

Abstract - We study the stochastic resource-constrained project scheduling
problem or SRCPSP, where project activities have stochastic durations. A so-
lution is a scheduling policy, and we propose a new class of policies that is a
generalization of most of the classes described in the literature. A policy in this
new class makes a number of a-priori decisions in a preprocessing phase while
the remaining scheduling decisions are made online. A two-phase local search
algorithm is proposed to optimize within the class. Our computational results
show that the algorithm has been efficiently tuned towards finding high-quality
solutions, and that it outperforms all existing algorithms for large instances.
The results also indicate that the optimality gap even within the larger class of
elementary policies is very small.

Keywords - project scheduling, uncertainty, stochastic activity durations, schedul-
ing policies

1 Introduction

A project is a temporary endeavor to achieve clearly defined goals. Project management deals
with the planning, organization, execution, monitoring (controlling) and closing of a project
in order to attain the project’s objectives (Project Management Institute, 2013). A project
entails a set of activities that have to be executed while respecting precedence constraints and
resource and time limitations. Project scheduling belongs to the planning phase of project
management, in which a schedule is developed that decides when to start and finish the
activities in order to achieve the project’s goals. Practical project management is usually
confronted with scarceness of the resources available for processing the activities. Over the
last decades, this has given rise to a large body of literature on resource-constrained project
scheduling, with the so-called resource-constrained project scheduling problem (RCPSP) as
a central problem.

In practice some of the scheduling parameters may be uncertain. The exact duration
of an activity, for instance, might not be known at the beginning of the project. One of
the earliest sources for this observation is Malcolm et al. (1959). Similarly, the number of
available resources is another parameter that may not be known before project execution.
These uncertainties may be due to different sources, including estimation errors, unforeseen
weather conditions, late delivery of some required resources, unpredictable incidents such
as machine breakdown or worker accidents, etc. For further motivation for the study of
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uncertainty in project scheduling we refer to Lambrechts (2007); Yu and Qi (2004); Wang
(2004).

In the classic problem RCPSP, the goal is to find a schedule with minimum schedule
length, or makespan. This is indeed by far the most frequently studied objective in the
project-management literature, although other objectives such as net present value and
weighted earliness/tardiness have also received some attention. The stochastic RCPSP or
SRCPSP is the optimization problem that results when the activity durations in RCPSP
are modeled as stochastic variables. The uncertainty in processing times can have various
causes, among which machine breakdowns (see Pinedo, 2008). Since makespan is a function
of the activity durations, the goal in SRCPSP is to minimize the expected makespan, and
this will also be the objective in this article. All other parameters of RCPSP, in particular
the resource requirements and availabilities, are assumed to be fully known at the time of
scheduling. For examples of other objective functions in stochastic project scheduling, we
refer to Leus (2003); Bendavid and Golany (2011); Bruni et al. (2011); Van de Vonder et al.
(2008); Deblaere (2010).

Based on the foregoing, SRCPSP can be seen as a generalization of the deterministic
problem RCPSP. Since RCPSP is NP-hard (Blazewicz et al., 1983), the stochastic counter-
part can also be expected to be intractable. Additionally, solution procedures for RCPSP
may not be valid anymore; the main reason is that a solution to SRCPSP can no longer be
represented as a single schedule (Stork, 2001). Indeed, it needs to be decided for each possible
scenario of activity durations when to start which activities, and so different schedules may
result for different scenarios. A solution to SRCPSP is therefore a policy : a set of rules that
prescribe how to dynamically schedule the activities in each possible scenario (Radermacher,
1981). We will formalize this concept and discuss different policy classes in Section 2.

We distinguish three main strategies for tackling uncertainty in scheduling problems.
Firstly, the decision maker may try to find a schedule that can tolerate minor deviations
from the predicted values for the activity durations. This approach is typically called robust
or proactive scheduling. The robustness of a schedule increases with its ability to absorb
variability. For an example, see Artigues et al. (2013). The resulting schedule is often called
a baseline schedule, predictive schedule or pre-schedule for short.

The second strategy, reactive scheduling, iteratively “repairs” an initial schedule in order
to adjust it to the realizations of the underlying stochastic variables, which are progressively
observed during the execution of the project. This repair step focuses on rendering the
schedule feasible again, minimizing the effect of disruptions, and maintaining a good score
on the initial objective (e.g., low makespan). In proactive scheduling, some simplifying
assumptions are typically made about this repair step. In particular, it is to be noted that
proactive and reactive scheduling are not mutually exclusive, but rather that they can be
complementary. For more details, see Deblaere et al. (2011); Van de Vonder et al. (2005);
Chtourou and Haouari (2008).

The third type of strategy for executing a project in the context of SRCPSP is often
called stochastic scheduling, and this is also the approach followed in this article. Here, no
pre-schedule is built before the execution of the project, but starting from an empty initial
schedule, a complete schedule (containing all activities) is constructed gradually as time
progresses by means of a scheduling policy, exploiting the information that was gathered
up until the current time (e.g., realized activity durations) as well as the a-priori available
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information on the uncertainty of activity durations. The policies that we study are static
(not modifiable during project execution), but decision making using a policy is dynamic,
meaning that the policy typically responds differently in various scenarios, leading to different
final schedules. Due to the absence of a baseline schedule, this approach is sometimes
referred to as a purely reactive or online strategy. Scheduling policies can also be applied
if a baseline schedule is used. This latter combination only appears rather rarely in the
literature, however; see Leus and Herroelen (2004) for an example.

The main contributions of this work are fourfold. (1) A new class of policies is pro-
posed that is a generalization of most of the classes described in the literature. (2) Our
computational results show that our proposed procedure, optimizing within this new class,
outperforms all existing algorithms, in the sense that it obtains higher-quality solutions with
the same computational effort. (3) The results also indicate that the algorithm has been
efficiently tuned towards finding high-quality solutions in the larger search space of the new
class. In particular, for small instances, the optimality gap even within the larger class of el-
ementary policies is very small – which is also a sign that the policy class itself contains very
good elementary policies. (4) As an alternative to simulation-based evaluation of scheduling
policies, we also examine an exact Markov-chain evaluation subroutine. To this aim, a gen-
eralization of the Kulkarni-Adlakha Markov chain (Kulkarni and Adlakha, 1986) is proposed
to include start-to-start precedence constraints. Next to these four main contributions, we
also describe a counterexample that shows that the class of elementary policies does not
necessarily include a globally optimal policy within the class of static policies. Although we
mainly evaluate our proposed algorithm based on the number of generated schedules during
simulation, we also report our computation times as an alternative measure of computational
effort, which can be useful for future works that are not merely based on simulation.

The remainder of this article is organized as follows: a number of definitions are provided
in Section 2, together with a description of RCPSP, SRCPSP and scheduling policies. Sec-
tion 3 outlines our ideas to extend the class of so-called preprocessor policies, and solution
evaluation is the subject of Section 4. A two-phase metaheuristic algorithm is proposed in
Section 5 that allows us to find high-quality members within the newly proposed class of
policies. Extensive computational results are reported in Section 6. A summary and some
conclusions are given in Section 7.

2 Definitions

We first introduce the problem RCPSP in Section 2.1. Subsequently in Section 2.2, we
provide a formal statement of SRCPSP. We then introduce different scheduling policies in
Section 2.3, and in Section 2.4 we describe why so-called elementary policies are not globally
optimal.

2.1 The deterministic case

One of the inputs of an instance of RCPSP is a set of activities N = {0, . . . , n} with known
deterministic durations di ∈ N for each activity i ∈ N . In SRCPSP, which is the central
problem of this work, the assumption of known values for activity durations is relaxed, and
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the durations are modeled as random variables (see Section 2.2). All activities are executed
without preemption, which means that once an activity is started, it is executed without
interruption until its completion. Furthermore, K is a set of renewable resource types; each
type k ∈ K has a finite capacity ak that remains unchanged throughout the project. Each
activity i ∈ N occupies rik units of each resource type k ∈ K for the entire duration of its
execution; we assume 0 ≤ rik ≤ ak. Activities 0 and n are dummy activities, serving as
start and end of the project, with zero duration (d0 = dn = 0) and without resource usage
(r0k = rnk = 0 for all k ∈ K).

A solution to (an instance of) RCPSP is a schedule, which is denoted by a vector s =
(s0, . . . , sn), in which si is the starting time of activity i ∈ N in the schedule. Without loss of
generality, we restrict starting times to integer values. The starting times have to respect a
given set of precedence constraints, which are described by a directed acyclic graph G(N,A),
with A a partial order relation on N (a binary relation that is transitive and irreflexive).
Below we will call such a relation A on N a precedence relation. Activity 0 is predecessor
and activity n is successor of all other activities.

We can now provide the following conceptual formulation of RCPSP:

minimize sn (1)

subject to

si + di ≤ sj ∀(i, j) ∈ A (2)∑
i∈A(s,t)

rik ≤ ak ∀t ∈ N0,∀k ∈ K (3)

si ∈ N ∀i ∈ N (4)

The constraint set (2) describes the precedence constraints between the activities. These are
all of the finish-to-start (FS) type: the successor cannot be started before the predecessor is
finished. Later in this text, we will also use start-to-start (SS) constraints: if activity pair
(i, j) ⊂ N × N defines an SS-constraint, then this implies si ≤ sj. Eq. (3) represents the
resource constraints, where set A(s, t) contains the activities that are in process during time
period t (time interval [t− 1, t]) according to schedule s:

A(s, t) = {i ∈ N : si ≤ (t− 1) ∧ (si + di) ≥ t}.

A schedule s that respects constraints (2)–(4) is called a feasible schedule.
Surveys of solution methods for RCPSP are provided in Demeulemeester and Herroelen

(2002) and Neumann et al. (2006). While various exact methods have been described in the
literature for obtaining optimal solutions for RCPSP, development of heuristic procedures has
also received extensive attention as the computation time required for finding a guaranteed
optimal solution becomes unacceptably large as the size of the instances grows. Priority
rules are among the fastest of these heuristics; they build feasible schedules using a Schedule
Generation Scheme (SGS). Such SGSs are important for this text because some of the
scheduling policies for SRCPSP are derived from them. We discuss the two major types of
SGS below. Both types take an activity (priority) list (i.e., a complete ordering of N) as
input, and both stepwise add activities to a partial schedule.
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1. The parallel SGS iteratively moves from one decision point to the next at which ac-
tivities can be added (time incrementation). These decision points correspond with
the beginning of the time horizon and with the completion times of already scheduled
activities, and thus at most n decision points need to be considered. At each decision
point, each eligible activity is selected in the order of the priority list and it is scheduled
on condition that no resource conflict arises. An activity is eligible if it is unscheduled
and if all its predecessors according to A have been completed.

2. The serial SGS picks the next activity in the priority list in each iteration (activity
incrementation) and the earliest possible starting time is assigned such that no prece-
dence and resource constraints are violated. Consequently, exactly n iterations are
needed to obtain a compete schedule.

It should be noted that the parallel SGS produces non-delay schedules, which are schedules
in which activities cannot start earlier without delaying another activity even if activity
preemption is allowed. The serial scheme, on the other hand, produces active schedules,
which are schedules in which none of the activities can start earlier without delaying another
activity without activity preemption. Any non-delay schedule is an active schedule, but
the opposite is not true. While it can be shown that for each RCPSP instance there is at
least one optimal active schedule, an optimal non-delay schedule does not necessarily exist.
Additionally, for each active schedule there exists at least one activity list that will yield the
schedule using the serial SGS, and similarly each non-delay schedule can be found via the
parallel SGS. We refer to Kolisch (1996a,b); Sprecher (2000) for details and applications.

2.2 The stochastic RCPSP

Contrary to RCPSP, in SRCPSP the duration of activity i ∈ N is a random variable (r.v.)
Di, following a known probability distribution. If we denote the probability of event e by
Pr[e] then ∀i ∈ N we have Pr[Di < 0] = 0; we also assume Pr[D0 = 0] = Pr[Dn = 0] = 1.
The distributions may be fitted using historical data or experts’ judgments; for a detailed
discussion of the selection of a suitable distribution see Schatteman et al. (2008); Al-Bahar
and Crandall (1990); Chapman and Ward (2000); Dawood (1998); Shtub et al. (2005). All
durations are gathered in r.v. vector D = (D0, D1, . . . , Dn).

A scheduling policy decides at each decision point which activities, if any, should be
started. Decision points are typically the beginning of the time horizon and the completion
time of each activity. At each decision point t, a policy can only use information that
has become available up to t, together with a-priori knowledge of the distributions. This
restriction is called the non-anticipativity constraint (Stork, 2001). Fernandez et al. (1996,
1998) note that some of the commercial project scheduling software available in the 1990s
failed to take this constraint into account and consequently could produce misleading results.

A realization or scenario is a vector d = (d0, d1, . . . , dn), where each value di is a real-
ization of Di. Radermacher (1981) proposes to view a policy Π as a function Rn+1

≥ → Rn+1
≥

that maps scenarios d of activity durations to feasible schedules s = Π(d). Thus, for a given
scenario d, [Π(d)]i represents the starting time of activity i under policy Π; the makespan
of schedule Π(d) is then [Π(d)]n. The goal of SRCPSP is to find a policy that minimizes
E[[Π(D)]n], where E[·] is the expectation operator with respect to D. This minimization is
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often restricted to a search over a specific class of policies. We will introduce a number of
such classes that are of direct interest to this text in Section 2.3.

Most of the general concepts used in this section (such as scenarios, optimal policies,
non-anticipativity, etc.) are not specific to stochastic scheduling only, but are borrowed
from the literature on stochastic optimization. For further details we refer to Wets (1989);
Rockafellar and Wets (1991); Escudero et al. (1993).

2.3 Scheduling policies

Scheduling policies may be optimized prior to project execution, with all the parameters
decided and unchanged during the realization of the project. Such policies are referred to as
static (open-loop) policies and their class is denoted by CS. Alternatively, a dynamic (closed-
loop) policy runs an optimization routine for selecting the best set of starting activities at
each decision point, based on the latest system information. While closed-loop policies are
adaptive and more flexible than open-loop policies, they are generally perceived as being
computationally very hard to manage. Consequently, work on optimization in this class of
policies has remained very limited. In recent work, Li and Womer (2015) propose an ap-
proximate dynamic-programming algorithm to find closed-loop policies for SRCPSP. Their
computational results indicate that at the cost of significantly higher runtimes, the closed-
loop algorithm outperforms open-loop algorithms for instances with asymmetric duration
distributions, although open-loop policies remain superior for other instances.

In this work we focus on open-loop policies. One particular subset of CS are the ele-
mentary policies (EL-policies), whose class is denoted by CEL. An elementary policy starts
jobs only at completion times of other activities and at time 0. Direct optimization over
class CEL has only rarely been considered in the literature. In a recent article, Creemers
(2015) models SRCPSP with phase-type distributions as a Markov decision process and
proposes an exact algorithm for finding an optimal elementary policy. Unfortunately, an
elementary policy does not always have a representation that is compact (polynomial) in
the size of the instance, which limits optimization (either exact or heuristic) to small and
medium-size instances. Below, we present some subclasses of elementary policies that have
a more compact combinatorial structure.

2.3.1 RB-policies

Resource-based policies (RB-policies) are a direct extension of priority rules with the parallel
SGS for RCPSP. An RB-policy takes an activity list as input and at each decision point
tries to start each eligible activity in the order of the priority list. These policies are fast
and easy to implement, but they have some disadvantages. In the function view of poli-
cies (Radermacher, 1981) RB-policies are neither monotone nor continuous. One reason is
that they suffer from so-called Graham anomalies (Graham, 1966): there is a possibility of
increasing the project makespan when the duration of one or more activities is decreased.
Additionally, even with deterministic processing times, there are instances for which no ac-
tivity list yields an optimal schedule following an RB-policy. These observations are referred
to by some researchers (e.g., Möhring, 2000) as “unsatisfactory stability behavior” or “in-
adequate structural firmness,” and have been invoked by some as a motivation to eliminate
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these policies from further study. We denote the class of RB-policies by symbol CRB.
RB-policies, as well the other policy classes that will follow, are static: a policy is fully

specified prior to project execution. As outlined in Section 2.2, a mapping is set up from
scenarios to decisions (yielding schedules). Note, however, that this mapping is algorithmic
in nature (progressively producing a schedule), and is not merely an analytic mathematical
function.

2.3.2 AB-policies

Activity-based policies (AB-policies, also referred to as “job-based policies” (Stork, 2001)).
These policies proceed similarly as RB-policies with the addition of the SS-constraints:

[Π(d;L)]i ≤ [Π(d;L)]j, ∀{i, j} ⊂ N ; i ≺L j.

In words, for a given scenario d, an RB-policy defined by an activity list L cannot start an
activity j earlier than any of its predecessors i in L. Value [Π(d;L)]i is the starting time
of activity i obtained from policy Π. Elimination of the SS-constraints yields a simple RB-
policy with Graham anomalies, but the extra constraints improve the stability. AB-policies
require more attention for the specification of the priority list. Define a feasible instance
of SRCPSP to be an instance for which there exists a policy yielding a feasible schedule
for every scenario. For a feasible instance, an RB-policy with an arbitrary input list will
generate a feasible schedule for each scenario, but this is not always true for AB-policies.
More precisely, for AB-policies, the activity list L should define a linear extension of the
input order A, meaning that i ≺L j for each (i, j) ∈ A. AB-policies are derived logically
from priority rules with the serial SGS for RCPSP, and this is why they are sometimes
referred to as “stochastic serial SGS” (Ballest́ın, 2007). This class is denoted by CAB.

2.3.3 ES-policies

The class of earliest-start policies (ES-policies), denoted by CES, was first proposed by Ra-
dermacher (1981) and Igelmund and Radermacher (1983). For a binary relation E on N ,
let T (E) denote its transitive closure, which is the (inclusion-)minimal transitive relation
such that T (E) ⊆ E. A forbidden set F ⊂ N is a set of activities that are pairwise not
precedence-related (@{i, j} ⊂ F : (i, j) ∈ A), but that cannot be processed simultaneously
due to the resource constraints (∃k ∈ K :

∑
i∈F rik > ak). A minimal forbidden set (MFS )

is an inclusion-minimal forbidden set. We denote the set of MFSs for precedence relation E
by F(E). A policy Π ∈ CES is parameterized by a set of activity pairs X ⊂ (N × N) \ A
such that F(T (A ∪X)) = ∅ and G(A ∪X) is acyclic. Such a policy is said to “break” all
MFSs, meaning that for each F ∈ F(A) there will be at least one pair {i, j} ∈ F such that
(i, j) ∈ T (A ∪ X): in effect, we are adding additional FS-constraints via X such that all
potential resource conflicts are resolved beforehand. What remains is a new scheduling in-
stance without resource constraints but with a denser precedence graph. This new instance
is trivially solved for a given scenario d by starting each activity as early as possible, as
follows:

[Π(d;X)]j = max
(i,j)∈A∪X

{[Π(d;X)]i + di}, ∀j ∈ N \ {0}
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and [Π(d;X)]0 = 0. ES-policies are convex, monotone and continuous. Furthermore, Ra-
dermacher (1986) shows that any convex policy is an ES-policy. For further details and def-
initions we refer to Radermacher (1985); Igelmund and Radermacher (1983); Stork (2001);
Radermacher (1981).

2.3.4 Preprocessor policies

The class CPP of preprocessor policies (PP-policies) was first introduced by Ashtiani et al.
(2011). A PP-policy Π ∈ CPP is defined by a set of activity pairs X ⊂ N × N together
with an activity list L, with G(N,A ∪ X) acyclic. Each pair in X induces an additional
FS-constraint, and all remaining sequencing decisions are made dynamically during project
execution by an RB-policy defined by L for the graph G(N,A ∪ X). Consequently, a PP-
policy makes a number of a-priori sequencing decisions before the project is started in a
preprocessing step under the form of X. Note that this class is defined without specific
attention to MFSs: an extra edge in X may or may not resolve resource conflicts, so that
0 ≤ |F(T (A ∪ X))| ≤ |F(A)|. In fact, the inclusion of edges that do not break any MFS
may also have a beneficial effect on the expected makespan (Ashtiani et al., 2011).

2.3.5 Comparison

A major computational disadvantage of ES-policies, in comparison to policies using activity
lists, is their dependence on computing all MFSs, the number of which grows exponential
with n. Stork (2001) concludes that, for large instances, using AB-policies is the only
remaining alternative since they do not require the representation of resource constraints
by MFSs. He considers RB-policies to be “inadequate” based on the statement that a
minimal requirement for a policy is monotonicity and continuity (in view of policies as
functions). We do not follow this argument: in line with Ashtiani et al. (2011), we conjecture
that this absence of theoretical qualities hardly, if ever, constitutes an issue to a practical
decision maker when the expected makespan is appropriately low. Let ρτ be the minimum
expected makespan for policy class Cτ . Stork compares the minimum makespan for different
classes of policies in the deterministic case and concludes that ρES = ρAB ≤ ρRB. For
stochastic environments, on the other hand, he finds that the foregoing three policy classes
are incomparable, providing examples with ρ1 < ρ2 as well as with ρ2 > ρ1 for each pair of
classes {C1, C2} out of CRB, CAB and CES.

The computational disadvantage of enumerating MFSs for extension of the precedence
graph was circumvented by Ashtiani et al. (2011) by eliminating the requirement that extra
precedence constraints break MFSs in the definition of PP-policies. Ashtiani et al. show that
combining the SS-constraints that are inherent in AB-policies with the FS-constraints that
come with ES-policies in the same way as PP-policies were formed, leads to a new class that
is not a proper generalization of CES, which is why they prefer to combine ES-policies with
RB-policies rather than with AB-policies. Clearly, (CRB ∪CES) ⊂ CPP : PP-policies combine
the computational benefits and real-time dispatching features of CRB with the structural
stability and unconditional sequencing decisions of CES. This does not mean, however, that
CPP automatically contains better solutions than CAB or an extension of that class, although
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Figure 1: A counterexample to show that elementary policies are not necessarily globally
optimal.

Table 1: The makespan for three policies, dependent on the duration of activity 2.

D2 Πalt
EL Π∗EL Π1

1 10 13 10
9 18 14 14

average 14 13.5 12

Ashtiani et al. do provide empirical evidence that PP-policies tend to be better than AB-
policies, especially for medium to high-variability duration distributions.

2.4 Elementary policies are not globally optimal

The recent literature on computational solutions for SRCPSP has always focused on opti-
mizing over CEL or over a subset of this class. It should be noted, however, that the class
of elementary policies does not necessarily include the optimal policies with respect to all
static policies. To the best of our knowledge, this observation has not been explicitly re-
ported in the literature before, although the authors of earlier theoretical work in the 1980s
were clearly implicitly aware of this, but did not pay much attention to it; see for instance
Möhring et al. (1984) and (especially) Möhring and Radermacher (1989).

In the remainder of this text, we refer to an optimal static policy as a globally optimal
policy. For the instance depicted in Figure 1, the optimal elementary policy is dominated by
a non-elementary (static) policy. Each node in the graph corresponds with one activity, with
activity durations drawn from the finite set ωi and resource requirement ri for each i ∈ N .
The network is the transitive reduction of the graph G(N,A), meaning that transitive edges
such as (1, 4) are not included (although (1, 4) ∈ A). For activity 2, each of the two values in
ω2 has equal probability of 0.5, the other activities only have one possible duration. There
is one renewable resource type with availability a1 = 2.

Table 1 summarizes the makespan values of three different policies. The optimal elemen-
tary policy Π∗EL starts activities 2 and 3 in parallel, followed by activities 4 and 5 (in series).
For information, we also include the details of an alternative elementary policy Πalt

EL, which
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starts activity 3 together with activity 5 after the completion of activity 4. Finally, we also
consider the following non-elementary policy Π1, which starts activity 2 at time t = 0, and in
which the decision when to start activity 3 is made at t = 1. If activity 2 is finished at t = 1,
then activity 4 is started immediately and activity 3 will be started together with activity 5
afterwards. Otherwise, activity 3 is started at t = 1. This policy is not elementary because
when D2 = 9 then the decision point t = 1 is not the completion time of any activity.

The table shows that Π1 dominates its two elementary counterparts when it comes to
expected makespan. Similar counterexamples can be constructed with continuous duration
distributions, but these are typically less intuitive. In spite of this undesirable feature of
elementary policies, the new policy class that we propose in Section 3 is also elementary
because this will allow for a concise and structured description of the class, which makes it
easier to develop an efficient optimization procedure.

3 Generalized preprocessor policies

3.1 Definition

We propose the new class of generalized preprocessor policies (GP-policies), denoted by CGP .
A policy Π ∈ CGP is defined by an activity list L together with two sets of activity pairs
X, Y ⊂ N × N . Each activity pair (i, j) ∈ X defines an FS-constraint from activity i to
activity j, while each (i, j) ∈ Y induces an SS-constraint from i to j. The sets X and Y
thus contain sequencing decisions made before the project starts. All remaining decisions
are made dynamically during project execution by an RB-policy defined by L that respects
all precedence constraints in A ∪ X ∪ Y . The reasons why the inclusion of SS-constraints
(next to FS-constraints) might be beneficial for makespan minimization are explained in
Section 3.3.

We say that GP-policy Π(D;L,X, Y ) is feasible if for any realization of D, the embedded
parallel SGS (in the RB-policy) produces a feasible schedule given the constraints in L, X
and Y . Theorem 1 states a necessary and sufficient condition for feasibility of a GP-policy.

Theorem 1 A policy Π ∈ CGP is feasible if and only if G(N,A ∪X ∪ Y ) is acyclic.

Proof 1 Assume there is a cycle in G(N,A ∪ X ∪ Y ). First consider the case where all
constraints (i, j) forming the cycle are of type SS. If there are sufficient available resources
to start all activities of the cycle at the same time then a feasible schedule might exist, but
it cannot be produced by an RB-policy. This is due to the fact that using an SGS, activities
of the priority list are scanned one at a time, and for each activity to be eligible, all of its
predecessors should already be started. In other words, starting all activities of the cycle
simultaneously is not considered by the SGS. The case with one or more FS-constraints
(i, j) in the cycle can be discussed in a similar fashion, with the additional observation that
a feasible schedule will certainly not exist in scenarios with Di > 0.

Now assume that the policy Π(D;L,X, Y ) ∈ CGP is not feasible, so there exists at least
one scenario for which the parallel SGS cannot produce a feasible schedule. Since we only
consider instances where maxi∈N rik ≤ ak, ∀k ∈ K, the resource constraints alone cannot
cause this infeasibility, as one can always process all the activities consecutively, one at a
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Figure 2: Hierarchy of different policy classes.

time. Consider a scenario in which the SGS cannot produce a feasible schedule. Applying
the SGS in this scenario, we gradually construct a partial schedule up to the point where the
remaining activities cannot be scheduled. At the end of the latest finishing activity in this
partial schedule, the SGS scans all the unscheduled activities one at a time in the order of L to
see if any is eligible, but no such activity is found. Thus, for each unscheduled activity j there
is another activity i that has not yet been started and that needs to be either started (for an
SS-constraint) or completed (for an FS-constraint) before j could be scheduled. In the graph
induced by the nodes corresponding with the unscheduled activities, the edges corresponding
with these SS-constraints and FS-constraints necessarily contain a cycle (since the activities
cannot be linearly ordered).

3.2 Hierarchy

The hierarchy of the policy classes is graphically depicted in Figure 2. An arc from one class
to another means that the first class is included in the second one. The class of GP-policies
encompasses CPP as well as CAB, and therefore the new class theoretically dominates CPP
and CAB. From a computational point of view, however, we need to verify whether a search
procedure can be developed that is able to find solutions within the new class GP that are
better than those found in the subclasses with the same computational effort, because the
search area of the generalized class of policies is substantially larger than the search area of
its subsets. The heuristic search procedure will be presented in Section 5, and computational
results will be shown in Section 6.

3.3 Illustration and discussion

In essence, the functionality of additional FS-constraints in CES is to “break” MFSs. Once
all MFSs are resolved, an SGS is actually redundant since earliest possible start times can
be obtained by means of Critical Path Method (CPM) calculations, disregarding resource
constraints altogether. In this case, FS-constraints have a clear advantage over SS-constraints
in the sense that any single FS-constraint between two activities of an MFS resolves the MFS,
while this is not necessarily true for SS-constraints. In CPP , however, not all MFSs need
to be resolved by the extra FS-constraints, and resource constraints cannot be neglected
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Figure 3: A project instance where a feasible ΠGP outperforms an optimal Π∗PP .

(hence the priority list), and so the reasoning above for superiority of FS-constraints over
SS-constraints does not hold. In any case, we know that the SS-constraints inherent in a
serial SGS can sometimes help to find an optimal schedule for the deterministic RCPSP.
Moreover, Ashtiani et al. (2011) have shown that FS-constraints in CPP that do not break
any MFS can still help to achieve superior solutions. Below we further illustrate the potential
use of SS-constraints.

The first example, depicted in Figure 3, shows a case where a feasible GP-policy out-
performs an optimal member of CPP . In this example, each of the possible durations in ω3,
ω4 and in ω5 has equal probability 0.5. It is optimal to postpone activity 2 to be started
not earlier than activities 3, 4 and 5, and also to postpone activity 6 to be started not
earlier than activity 2. This policy assures that activity 2 is started following whichever
activity with uncertain duration that finishes the earliest, and also that it is not postponed
because of activity 6. Define L1 = (1, 3, 4, 5, 2, 6, 7, 8). For shorthand notation, through-
out the remainder of the text, we will often identify the class of a policy by a subscript
and omit the argument if there is no danger of confusion, so ΠRB(L1) is an RB-policy
with parameter L1. It can be shown that ΠRB(L1) and ΠPP (L1, {(3, 6)}) are both optimal
within their class. While E[[ΠRB(L1)]n] = 10.00 and E[[ΠPP (L1, {(3, 6)})]n] = 9.75, we have
E[[ΠGP (L1, ∅, {(2, 6)})]n] = 9.63.

Secondly, from an optimization point of view, there are also indications that, with the
same computational effort, we are more likely to find high-quality solutions within the larger
search space of CGP (which is empirically confirmed in Section 6).

The example depicted in Figure 4 shows a case where a given activity list L is only
improvable via SS-constraints and not by FS-constraints. In this example, each of the dura-
tions in ω5 and in ω6 has equal probability 0.5. For any elementary policy, it is a dominant
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Figure 4: A project instance to demonstrate the importance of SS-constraints.
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Table 2: Makespan for some RB-, PP- and GP-policies under different scenarios.

(D5, D6) (4,4) (4,10) (10,4) (10,10) average
ΠRB(L1) 9 15 11 15 12.5
ΠGP (L1, ∅, Y1) 10 11 11 16 12
ΠPP (L1, X1) 10 11 11 16 12
ΠRB(L2) 9 15 11 15 12.5
ΠGP (L2, ∅, Y1) 10 11 11 16 12
ΠPP (L2, X1) 9 15 11 16 12.75

decision to postpone activity 3 to be started not earlier than activities 5 and 6. This ensures
that activity 3 is started following the earliest finish from among activities 5 and 6. Table 2
compares different policies that achieve this. Define activity lists L1 = (1, 2, 4, 5, 6, 3, 7) and
L2 = (1, 2, 3, 4, 5, 6, 7), and sets of additional SS-constraints Y1 = {(5, 3), (6, 3)} and FS-
constraints X1 = {(2, 3), (4, 3)}. It can be shown that ΠRB(L1), ΠRB(L2) and ΠPP (L1, X1)
are each optimal within their class, and that ΠPP (L2, ∅) is the best PP-policy with list L2.
We observe that while both RB-policies are improvable via additional SS-constraints, only
one of them (ΠRB(L1)) is also improvable with FS-constraints. This insight is important
in view of the two-stage algorithm proposed Section 5, which selects an activity list in a
separate stage prior to adding precedence constraints. If we worked with CPP , selection of
L2 rather than L1 in the first stage would then lead to a local optimum.

Finally, the example depicted in Figure 5 presents a case where given an activity list
that is improvable by both SS- and FS-constraints, it is easier to find the the set Y1 of SS-
constraints rather than the set of FS-constraints required for equivalent performance. The
example is an extension of the previous example where activities 2 and 4 are divided into
three parallel activities, each with the same duration and resource requirements as before.
Hence, the number of the predecessors of 5 and 6 is increased. Consequently, to adapt
ΠPP (L1, X1) so as to stay equivalent with ΠGP (L1, ∅, Y1) (green arrows), X1 must include
all the FS-constraints from the sets of activities 2 and 4 to activity 3 (red arrows). In this
example, from an optimization point of view, finding the set Y1 (with |Y1| = 2) with the
same optimization effort is more likely than identifying X1 (with |X1| = 6).

4 Solution evaluation

Apart from the speed of convergence to optimality, the efficiency of optimization efforts for
SRCPSP is also dependent on the accuracy and runtime for the evaluation of a policy. In
line with the recent literature on SRCPSP, we will assess the quality of a scheduling policy
based on the percentage difference between the expected makespan and the Critical Path
Length (CPL) using the average durations. We will test two different calculation methods
for the expected makespan, namely using simulation and using a Markov chain.

Simulation is commonly used for expected-makespan estimation. Stork (2001) uses a
large set of scenarios (200) in each evaluation in order to increase the precision, while other
researchers (for instance Ballest́ın (2007) and Ashtiani et al. (2011)) opt for a rather low
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number of replications (e.g., 10) in order to investigate more policies within the same simu-
lation budget. The latter choice implies less accuracy for a given evaluation, but Ballest́ın
(2007) shows that examining a larger set of policies is favorable for obtaining a better final
outcome.

Creemers (2015) proposes an exact algorithm for SRCPSP with phase-type activity du-
rations by making optimal decisions via dynamic programming in a Markov decision process;
one of the prominent features of this procedure is efficient memory management for storing
all required states of the decision process. Although this algorithm by itself is not compu-
tationally viable for large instances, we can derive from this procedure an exact evaluation
subroutine that models the project execution as a Markov chain, and which can serve as
an alternative to simulation. Some modifications are needed to the original procedure, for
instance the inclusion of SS-constraints. More details on this Markov chain are provided in
Appendix.

5 A two-phase metaheuristic algorithm for CGP

Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve
complex optimization problems (Bianchi et al., 2009). In this section, we devise a two-phase
metaheuristic that consists of a Greedy Randomized Adaptive Search Procedure (abbreviated
as GRASP) and a Genetic Algorithm (GA) to find high-quality ΠGP (L,X, Y ).

GRASP, which was introduced by Feo and Resende (1995), consists of iterations made
up from successive constructions of a greedy randomized solution and subsequent iterative
improvements through local searches and self-learning techniques. Considering sequences as
individuals, for example, each new sequence is divided into a number of subsequences. In
order to fill each subsequence, a reference will be chosen. A reference may be to fill the
elements of a subsequence randomly or according to another already-built randomly chosen
sequence.

The population-based adaptive search procedure known as GA was introduced by Holland
(1975), and is a heuristic search algorithm that mimics the process of natural evolution. A
GA starts with the construction of an initial population (often called “first generation”)
and computes the next generations by applying crossover, mutation and selection operators.
The initial population is randomly divided into pairs (parents); the crossover operator then
produces two new offspring per pair, followed by the mutation operator. Lastly, the next
generation is created by invoking the selection operator, that determines which individuals
are carried over to the next generation and which ones are eliminated. We refer to Goldberg
(1989) for a detailed discussion on GAs. The overall structure of the proposed two-phase
metaheuristic is described in Section 5.1. Phase 1 is discussed in detail in Section 5.2, and
Phase 2 is the subject of Section 5.3.

5.1 Global structure of the algorithm

Our search procedure consists of two phases. The first phase produces adequate activity
lists by means of a GRASP, and in the second phase a GA finds additional constraints to
obtain a GP-policy with each list. Throughout the procedure, we distinguish between high-
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Algorithm 1 Overall structure

if HV then
ElectList = RB-GRASP
for i = 1 to NoList do

Arc-Add-GA(ElectList(i))
end for

else if LV then
ElectList = AB-GRASP
for i = 1 to NoList do

Arc-Remove-GA(ElectList(i))
end for

end if
Return the best solution found

variability (HV) and low-variability settings (LV); our detailed criteria to distinguish between
HV and LV are described in Section 6.1. This distinction is motivated by the observation
that AB-policies (which impose numerous additional SS-constraints) are globally optimal for
deterministic durations and also perform quite well for LV in general, whereas RB-policies
have empirically been found to be far better for HV (see Ashtiani et al., 2011; Ballest́ın and
Leus, 2009). This is only logical, because the latter class retains more flexibility for managing
unforeseen circumstances. Thus, for instances with HV, GRASP looks for a good RB-policy,
whereas in LV, the first phase produces a good AB-policy. In both cases, the output is a set
of activity lists, which is passed to the next phase. The overall structure of the proposed
method is depicted in Algorithm 1: the set ElectList holds the best NoList solutions passed
from Phase 1 to Phase 2.

5.2 Phase 1: activity lists

A general overview of the procedure RB-GRASP is shown in Algorithm 2, where the set
CurSolPop is the current solution population. The LV-version of the function (AB-GRASP)
is completely similar. The key element of the procedure is the BuildNewList function, which
produces new individuals. A justification technique is employed in order to improve the
quality of newly produced activity lists. A more detailed description of the main concepts
follows.

Individuals and fitness. Each individual is a precedence-feasible activity list L. An RB-
or AB-policy Π then associates an expected makespan value E[[Π(D;L)]n] with this
list, which is the fitness indicator of L. This fitness value can be computed via exact
methods such as a Markov chain, or estimated by means of simulation.

Building new lists. The BuildNewList function builds new individuals. An overview of this
function is provided in Algorithm 3. Firstly, each list is divided into multiple sublists.
Each sublist is then filled according to a specific reference. A random reference fills a
sublist by randomly choosing activities from the set of eligible activities E. An eligible
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Algorithm 2 RB-GRASP

CurSolPop = ∅
while TerminationCriterion not met do
L = BuildNewList(CurSolPop)
s = ΠAB(E[D];L)
s = Justification(s)
L = ScheduleToList(s)
Compute E[[ΠRB(D;L)]n]
if Cardinality(CurSolPop) < PopSize1 then

CurSolPop = CurSolPop ∪ {L}
else if L is better than the worst solution L′ ∈ CurSolPop then

CurSolPop = (CurSolPop \ {L′}) ∪ {L}
end if

end while
ElectList = the NoList best solutions of CurSolPop
Return ElectList

activity is an unselected activity for which all of the predecessors have already been
selected. If LFT is chosen as a reference, biased random selection is applied, where
activities have a higher chance of being selected if they have a small CPM-based latest
finish time LFT. In order to make such selections, we incorporate regret-based biased
random sampling (RBRS) such that:

πj =
ρj + 1∑

k∈E(ρk + 1)
, ∀j ∈ E,

where πj is the selection probability of activity j and ρj = maxk∈E{LFTk} − LFTj.
The third reference type, pattern, is to choose activities from E according to another
already built activity list. The functioning period (FP) of a reference is the maximum
number of times that the reference is allowed to be used before we choose a new one.
For random or LFT patterns FP = 1, while for a pattern reference, it is chosen randomly
from [FPmin,FPmax]. A new list is produced when all its sublists are filled.

Selecting reference. Function SelectReference is used in order to assign references to sub-
lists. To ensure sufficient diversity of the initial population, the reference type for the
first PopSize1 (population size in Phase 1) solutions is restricted to random (with prob-
ability pRandom) and LFT (with probability 1 − pRandom). For the next solutions,
choosing pattern as a reference is possible (with probability 1− pRandom− pLFT). For
this type, a reference activity list L ∈ CurSolPop is randomly chosen.

Justification. In order to improve each new activity list, we apply a double justification
technique (see Li and Willis, 1992; Özdamar and Ulusoy, 1996). Valls et al. (2005)
show that justification is an effective technique to enhance RCPSP solutions without
substantially more computational efforts. Both for HV as well as LV, a schedule s is
first built by applying the serial SGS to the list over a single scenario with expected
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Algorithm 3 BuildNewList(CurSolPop)

i = 0
FP = 0
while i < n do

if FP = 0 then
reference = SelectReference(CurSolPop)
if reference 6= LFT or random then

FP ∈ [FPmin,FPmax]
end if

else
FP = FP− 1

end if
Select an activity j ∈ E according to the reference
L(i) = j
i = i+ 1

end while
Return the activity list L

durations. A double justification consists of shifting activities to the right as far as
possible in nonincreasing order of their finish times without altering the start of ac-
tivity n and then re-shifting them to the left. The justified s is then reconverted into
a list via ScheduleToList by ordering activities in nondecreasing order of their starting
times. Preliminary experiments have indicated that using the parallel SGS for the jus-
tification of activity lists significantly decreases the diversity of the produced solutions
in a population and leads to undesirable convergence to local optima.

5.3 Phase 2: additional precedence constraints

The second phase comprises a GA that finds sets of additional precedence constraints, which
together with each activity list L in ElectList form a complete GP-policy. Dependent on
the variability setting, the details of this phase differ slightly. For HV, we identify sets X
and Y of additional FS- and SS-constraints to form ΠGP (L,X, Y ) that improves upon the
RB-policy ΠGP (L, ∅, ∅). In LV, on the other hand, starting from ΠGP (L, ∅, Ŷ ) we look for
a set Y ⊂ Ŷ that leads to a good policy ΠGP (L, ∅, Y ), where Ŷ = {(i, j)|i ≺L j}. The two
variants of the algorithm are further elaborated in Section 5.3.1 and Section 5.3.2.

5.3.1 Phase 2 in HV

The goal is to find sets X and Y of additional precedence constraints such that

E[[ΠGP (D;L,X, Y )]n] < E[[ΠRB(D;L)]n].

For each L ∈ ElectList, the GA produces an initial population and then iteratively builds
new populations via crossover and mutation operators. Each population has size PopSize2.
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Individuals. An individual Z = {X, Y } contains two unordered sets of activity pairs
(i, j) /∈ A. The individual is said to be feasible if and only if G(N,A ∪ X ∪ Y ) is
acyclic.

Initial population. Each initial population member contains between one and npairs ac-
tivity pairs, with all cardinalities having equal probability. Note that members of
subsequent generations can contain a number of elements that is not in {1, . . . , npairs}.
First, ΠRB(E[D];L) is constructed, where at each decision point t we encounter a set
Nt ⊂ N of activities that are either eligible to be started or are already in process. The
set CSS of candidate SS-constraints then contains each (i, j) ∈ Nt×Nt encountered at
any decision point t for which the following criterion holds:

[ΠGP (E[D];L,∅, {(i, j)})]n < [ΠGP (E[D];L,∅,∅)]n

and the same for CFS with the following condition:

[ΠGP (E[D];L, {(i, j)},∅)]n < [ΠGP (E[D];L,∅,∅)]n.

The initial population is then constructed with individuals Z = {X, Y } such that
X ⊂ CFS and Y ⊂ CSS, and the more improving candidates have a higher selection
probability.

Crossover. The crossover operators for lists cannot be applied here, hence we use a uniform
crossover as follows. The two parents are randomly selected from the current popula-
tion, with selection probability proportional to their quality. Each edge in the father
is assigned to the son with probability pcross, otherwise it is added to the daughter.
Each edge in the mother is analogously assigned to either daughter or son.

Mutation. The mutation operator modifies some individuals in order to retain diversity in
the population. Each solution Z is mutated with probability pmut. If mutation occurs,
then one randomly selected pair is removed with probability px; a random pair from
CFS \X and CSS \ Y is added to Z, otherwise.

Selection. The selection operator is the same as in Phase 1: the solutions are ranked
according to their objective value. The first PopSize2 solutions are then retained as the
new generation.

5.3.2 Phase 2 in LV

In Phase 2 for LV, we search for a good policy ΠGP (L, ∅, Y ), so we only add SS-constraints
and no FS-constraints. Each population again has size PopSize2, and the initial population
is constructed as follows: PopSize2 − 1 solutions are generated similarly as in HV but with
candidate set Ŷ , and one initial solution is the output of a greedy subroutine. For any j ∈ N
let Yj = {(i, j)|i ∈ N, i ≺L j} be the set of all SS-constraints imposed on activity j. Starting

from Y ′ = Ŷ , the greedy subroutine iteratively evaluates the condition

E[ΠGP (D;L,∅, Y ′ \ Yj)]n] < E[ΠGP (D;L,∅, Y ′)]n]
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for each j ∈ N in order of list L. If the condition is satisfied, then Y ′ is updated as
Y ′ := Y ′ \ Yj. The algorithm stops when no further improvement is possible.

Similarly to Section 5.3.1, GA produces a final set Y by adding and/or removing con-
straints, and new generations are again iteratively constructed using similar crossover, muta-
tion and selection functions. The algorithm halts when the simulation budget of the second
phase is fully used.

6 Computational results

6.1 Experimental setup

All experiments have been performed on a personal computer with Intel i7-3770 CPU with
3.40 GHz clock speed and 8.00 GB of RAM. The algorithms are coded in Microsoft Visual
Studio C++. Our main dataset is the J120 instance set from the PSBLIB library, which was
generated using the ProGen generator (Kolisch and Sprecher, 1996). It includes 600 RCPSP
instances with 120 non-dummy activities each. We will also use the J30 and J60 sets from
the same library, which contain 480 instances with 30, resp. 60, activities each.

In line with Ashtiani et al. (2011); Ballest́ın and Leus (2009); Stork (2001); Fang et al.
(2015) and Ballest́ın (2007), which are the most important works in the literature on SR-
CPSP that report computational results on large instances, we choose uniform, beta and
exponential distributions for the activity durations. The expected activity durations are
equal to the deterministic processing times d∗ ∈ Nn+1 in the PSPLIB datasets. We use five
different distributions to model the duration of an activity i ∈ N : two continuous uniform
distributions with support [d∗i −

√
d∗i ; d

∗
i +

√
d∗i ] and [0; 2d∗i ]; one exponential distribution

with rate parameter d∗
−1

i ; and two beta (generalized truncated) distributions with variance
d∗i /3 and d∗

2

i /3, both with support [d∗i /2; 2d∗i ]. In the remainder of this text we will refer
to these five distributions as U1, U2, Exp, B1 and B2, respectively. The variances of these
distributions are, in the same order, d∗i /3, d∗

2

i /3, d∗
2

i , d∗i /3 and d∗
2

i /3. Thus, U1 and B1 have
relatively low variance, U2 and B2 have medium variability and Exp displays high variability.
Below, we will work with the HV setting of our algorithm for the last three distributions,
and with LV for U1 and B1. In both beta distributions, the parameter β = 2α; for B1 we
use α = (d∗i /2)− (1/3) and for B2 we have α = (d∗i /2)− (1/6).

Based on some preliminary experiments and on the findings of Ashtiani et al. (2011),
we choose the probabilities pcross = px = 0.5 and pmut = 0.05, the population size in
the first phase PopSize1 = 40 and the number of returned activity lists NoList = 1. In the
second phase, we set the maximum number of additional constraints in the initial population
npairs = 7, the population size PopSize2 = 20 and the parameters FPmin = 1 and FPmax = 30.

6.2 Policy evaluation

6.2.1 Simulation

The evaluation of the quality of an algorithm is based on the average percentage distance
of E[[Π(D)]n] from the CPL with deterministic durations d∗. The expected makespan is
estimated via simulation or is obtained by means of a Markov-chain evaluation subroutine
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(see Section 4). In most of the existing literature, scenarios are generated via simple Monte
Carlo sampling, but Saliby (1990) observes that simple random sampling may lead to an
imprecise description of known input distributions, which will increase the inaccuracy of
simulations. Especially since we intend to run only few generations, this problem might
become severe. Consequently, in line with Ashtiani et al. (2011) and Ballest́ın and Leus
(2009), we use descriptive sampling as a variance reduction technique, in which we use a
random permutation of quantiles of the distribution at hand.

In the literature on SRCPSP, in order to compare different proposed algorithms despite
the use of different computers, the optimization effort is controlled by allowing an equal
simulation budget. More precisely, algorithm A is better than algorithm B if it finds better
solutions with an equal number of generated schedules. In line with Ballest́ın and Leus
(2009); Ballest́ın (2007); Ashtiani et al. (2011); Fang et al. (2015), we use two upper bounds
on the number of generated schedules, namely 5000 and 25000. Ashtiani et al. (2011) observe
that generating a schedule with a member from CRB or CPP requires approximately twice
as much time as CAB. Since GP-policies require the same computational requirement as
PP-policies, we decide to adopt the following counting convention: one GP-policy in Phase 1
will be counted as 1 (schedule with RB-policy) + 2 (for applying the justification operator)
+ nsim (number of simulations for evaluation) = nsim + 3. In Phase 2, each iteration of GA
and each iteration of the greedy subroutine correspond to nsim scenarios. The number of
iterations of the algorithm should be set based on this counting convention and the upper
bound (5000 or 25000) on the total number of schedule generations. In our implementation,
we will evenly distribute the total budget of generated schedules among the two phases.
Following Ashtiani et al. (2011) and Ballest́ın and Leus (2009), we opt for nsim = 10.

6.2.2 Comparison of simulation-based and exact policy evaluation

We have examined the effect of replacing the simulation subroutine of our two-phase meta-
heuristic procedure, subsequently referred to as GP-H, with an exact evaluation subroutine
based on a Markov-chain approach (see Section 4). Both versions of the algorithm, denoted
by GP-H(SIM) and GP-H(MC), have been applied to the J30 dataset with exponential du-
rations. The simulation budget in GP-H(SIM) is limited to 25000 generated schedules; the
number of policies examined by GP-H(MC) is the same as for GP-H(SIM). The results are
then compared to the optimal elementary policies obtained by the exact algorithm proposed
by Creemers (2015) (Exact). The details are provided in Table 3. The column labeled “gap”
contains the percentage gap between optimal and heuristic makespan; runtimes are expressed
in seconds. We observe that the Markov-chain evaluation consumes significantly more CPU
time (an increase by a factor of over 1000). The benefit, however, is that the average op-
timality gap is reduced to only one third of its value with simulation evaluation, so there
is a clear trade-off to be struck between runtime and quality of the solutions found. In the
remainder of this text, we will only apply the simulation subroutine to estimate expected
makespan because only in this way can comparisons be made with the published results for
other procedures.
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Table 3: Comparing E[[Π(D)]n] for GP-H(SIM), GP-H(MC) and Exact in J30.

J30
procedure makespan gap (%) CPU

GP-H(SIM) 75.22 0.91 0.07
GP-H(MC) 74.89 0.36 88.27

Exact 74.60 0.00 0.49

Table 4: Average percentage difference between the makespan and CPL for different algo-
rithms for J120.

distribution
procedure # schedules U1 U2 Exp B1 B2

5× 103 51.49 78.65 120.22 —– —–
AB-GA

25× 103 49.63 75.38 116.83 —– —–

5× 103 46.84 72.58 114.42 47.17 75.97
AB-GR

25× 103 45.21 70.95 112.37 45.60 74.17

5× 103 48.86 58.91 76.03 49.01 58.82
PP-GA

25× 103 47.21 58.07 74.56 47.25 57.95

5× 103 47.29 56.54 72.50 47.65 58.29
RB-EDA

25× 103 46.66 56.07 72.05 47.04 57.82

5× 103 46.71 55.95 71.71 46.87 55.95
GP-H

25× 103 44.98 55.37 71.29 45.12 55.42

6.3 Comparison with other policies

Table 4 compares our two-phase metaheuristic procedure (GP-H in the table) optimizing in
CGP with a GA for CAB proposed by Ballest́ın (2007) (AB-GA), the GRASP algorithm for
CAB proposed by Ballest́ın and Leus (2009) (AB-GR), the two-phase GA for CPP proposed
by Ashtiani et al. (2011) (PP-GA) and the so-called “estimation-of-distribution” algorithm
of Fang et al. (2015) (RB-EDA), for the J120 dataset. We observe that GP-H outperforms
all other algorithms in all five distributions. This supports the theoretical dominance of
CGP over CAB and CPP discussed in Section 3. Since the search space is significantly larger
for CGP than for the other policy classes, these results also indicate that the proposed two-
phase algorithm has been efficiently tuned towards finding high-quality solutions in this large
search space.

The exact method of Creemers (2015) (Exact) for finding optimal elementary policies
cannot be applied to this dataset due to excessive memory usage: the largest instances that
can be solved by the procedure have 30 to 60 activities. In Table 5, the results of the
exact algorithm are compared with GP-H and AB-GR applied to J30 and J60, considering
only exponential durations. The simulation budget in GP-H and AB-GR is limited to 25000
generated schedules. Note that not all instances of J60 could be solved via Exact, so this
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Table 5: Comparing the output of AB-GR and GP-H with optimal elementary policies in J30
and J60.

J30 J60
procedure makespan gap (%) CPU makespan gap (%) CPU

AB-GR 81.88 10.10 —– 122.92 18.41 —–
GP-H 75.22 0.91 0.07 112.13 1.19 0.30
Exact 74.60 0.00 0.49 110.59 0.00 831.58

Table 6: Runtimes (in seconds) for GP-H under different settings for J120.

distribution
procedure # schedules U1 U2 Exp B1 B2

5× 103 92.7 93.4 94.8 207.6 201
GP-H(LV)

25× 103 394.8 401.6 395.2 518.2 524.5

5× 103 339 331 301.6 450.9 432
GP-H(HV)

25× 103 799.9 755.2 794.2 888.6 943.9

comparison only includes the solved instances (227 out of 480). As before, “gap” is the
percentage gap between optimal and heuristic makespan. Runtimes are expressed in seconds.
We observe that the gap between the solutions obtained using our proposed algorithm and
the optimal values is around 1% in both J30 and J60, while this gap for AB-GR is significantly
higher.

Note that we have assessed the performance of our algorithm compared to optimal el-
ementary policies in this section, although elementary policies are not necessarily globally
optimal (see Section 2.4). To the best of our knowledge, however, there are no publications
in the literature that solve over a larger class of static policies with an expected makespan
objective (although a limited number of studies have also looked into other than only el-
ementary policies for other, so-called “non-regular,” objectives, see for instance Buss and
Rosenblatt (1997) and Bendavid and Golany (2011)).

6.4 Runtimes

Although counting schedule generations is an accepted method for eliminating the impact of
different computation devices (see Hartmann and Kolisch, 2000, for instance), it is incompat-
ible with approaches that are different from mere simulation-optimization (e.g., Creemers,
2015; Li and Womer, 2015). The goal of this section is therefore to report runtimes, as an
alternative measure for computational effort, so that future researchers can evaluate their
algorithms based on these times as well. Table 6 contains the runtimes of GP-H applied to
J120 for all five distributions. GP-H(LV) refers to the GP-H algorithm with HV-setting (see
Section 5.3.1), while GP-H(HV) is the LV-version described in Section 5.3.2.

The higher runtimes for GP-H(HV) are mainly due to the inclusion of preprocessing
calculations in Phase 2 to create CSS and CFS. Also, due to the more time-consuming
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Figure 6: The effect of the number of schedules on the performance of GP-H in J120.
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Figure 7: The effect of the number of schedules on the performance of GP-H in J30 with
exponential durations.

generation of random numbers, both versions of the algorithm are slightly slower for the
beta distribution compared to U1, U2 and Exp.

6.5 Makespan as a function of computational effort

Recent work on SRCPSP using simulation-optimization methods has typically limited com-
putational effort to 5000 and 25000 schedules. In this section we examine how these bounds
affect the performance of the proposed algorithm. For this purpose, we have run GP-H on
J120 (all five distributions) and J30 (only exponential distribution), with the budget on
the schedule count varying from 103 to 200 × 103. Some of the parameters, including nsim,
PopSize and the number of iterations in GRASP and GA, are modified according to this
budget.

Figure 6 and Figure 7 summarize our findings. In all plots, the horizontal and vertical
axis represent the number of schedules and the percentage difference between CPL and
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E[[Π(D)]n], respectively. In Figure 7, the output of Exact and GP-H are compared for the
exponential distribution. As depicted in the figures, in LV (U1 and B1) and also for the small
instances (J30), a budget of 25 × 103 generated schedules seems to be sufficient to achieve
the best performance of the heuristic algorithm. In HV (U2, B2 and Exp), on the other
hand, a more extensive search yields a noticeably better final outcome. This suggests that
extending the upper bound on the number of schedules can be useful for these distributions.

7 Summary and conclusions

In this article, we have proposed the new class of generalized preprocessor policies (GP-
policies) for the stochastic resource-constrained-project scheduling problem (SRCPSP). The
class of GP-policies is a generalization of the existing classes of RB-, AB-, ES- and PP-
policies. A GP-policy makes a number of a-priori scheduling decisions in a preprocessing
phase under the form of additional precedence constraints, while the remaining decisions are
made online by adhering to a priority list.

We have developed a two-phase algorithm for finding high-quality GP-policies. Our
computational results show that the algorithm outperforms all existing procedures for large
instances, and that the algorithm has been efficiently tuned towards finding high-quality
solutions in the larger search space of the new class. In addition, for small instances, the
average optimality gap is very low although we compare with optimal elementary policies,
which belong to an even larger class. This indicates that class of GP-policies by itself also
contains very good elementary policies.

As an alternative to simulation-based evaluation of scheduling policies, we have also
examined an exact Markov-chain evaluation subroutine. To this aim, we have generalized the
Kulkarni-Adlakha Markov chain in order to also include start-to-start precedence constraints.
We find that the Markov-chain evaluation is significantly more time-consuming but also
substantially increases the quality of the solutions found within the same number of evaluated
solutions.

In this work, the additional precedence constraints (representing preprocessing decisions)
are chosen by a local search algorithm with randomly evolving generations. For future work,
it would be interesting to focus on adding more intelligence in the search for additional con-
straints, for instance by describing specific settings under which extra precedence constraints
are particularly useful, or should be avoided.

Appendix: Exact evaluation of GP-policies for exponen-

tial distributions

In this appendix, we describe an exact evaluation procedure for the expected makespan
of a feasible GP-policy Π(L,X, Y ), when each activity i has an exponentially distributed
duration with rate parameter λi.

We use a Markov chain in which a state is represented by a pair (I, O), where I and O
are the sets of idle and ongoing activities, respectively. The set F of finished activities is
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fully defined by given choices for I and O. In a state (I, O), an activity i ∈ N is eligible to
start if the following three conditions hold:

(1) i ∈ I,

(2) j ∈ F for all j for which (j, i) ∈ A,

(3) rik ≤
(
ak −

∑
j∈O rjk

)
for all k ∈ K.

For a given state (I, O), let H denote the set of eligible activities, and W ⊆ H the set of
activities to be started in that state (following the given policy Π(L,X, Y )). Activities i ∈ H
are considered in order of L for inclusion into W , and are included if two conditions apply:

(1) j ∈ (O ∪ F ) for all j for which (j, i) ∈ Y ,

(2) j ∈ F for all j for which (j, i) ∈ X.

If |W | > 0 then an immediate transition is made toward state (I \W,O ∪W ). Otherwise (if
W is empty), no activities are started and a transition takes place after completion of the
first activity in O. The probability that an activity i ∈ O finishes first equals λi/

∑
j∈O λj.

The time until the first completion is exponentially distributed and has expected value(∑
i∈O λi

)−1
.

With each state (I, O) we associate a value function G(I, O) that represents the expected
time when state (I, O) is visited, and π(I, O) denotes the probability that the state is visited.
We stepwise update both values. If W 6= ∅ then π(I \W,O∪W ) is increased by π(I, O) and
G(I \W,O∪W ) is increased by G(I, O)π(I, O). Otherwise (W = ∅), probability π(I, O\{i})
is increased by π(I, O)λi/

∑
j∈O λj, and value function G(I, O \ {i}) is augmented with(

G(I, O) +
(∑

i∈O λi
)−1)

π(I, O)λi/
∑

j∈O λj.

Memory rather than computation time is typically the bottleneck when evaluating a
Markovian PERT network. In our implementation, we have used techniques described in
Creemers et al. (2010) and Creemers (2015) to delete states from memory when they are no
longer needed.
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