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Abstract - We present a Markov model to analyze the queueing behavior of
the nonstationary G(t)/G(t)/s(t) + G(t) queue. We assume an exhaustive service
discipline (where servers complete their current service before leaving) and use
acyclic phase-type distributions to approximate the general interarrival, service,
and abandonment time distributions. The time-varying performance measures
of interest are: (1) the expected number of customers in queue, (2) the variance
of the number of customers in queue, (3) the expected number of abandonments,
and (4) the virtual waiting time distribution of a customer arriving at an arbi-
trary moment in time. We refer to our model as G-RAND since it analyzes a
general queue using the randomization method. A computational experiment
shows that our model allows the accurate analysis of small- to medium-sized
problem instances.

Keywords - nonstationary arrivals, time-varying demand, Markov model,
G(t)/G(t)/s(t) + G(t) queue, performance measurement

1 Introduction

Many service systems exhibit a cyclic demand for service. For example, in call centers, emer-
gency departments, banks, and retail stores, the number of arrivals typically displays a daily,
weekly, or monthly recurring pattern. Figure 1, for instance, shows the daily fluctuations
in arrival rate at the emergency department of a regional hospital in Belgium Defraeye and
Van Nieuwenhuyse (2013); other examples can be found in Green et al. (2006), Brown et
al. (2005), and Dietz (2011), among others. Apart from the time-varying nature of demand,
additional complexities may arise because of (1) the presence of customer impatience, which
causes customers to abandon before receiving service if their waiting time is too long and
(2) the general distribution of service and abandonment times.

The Poisson assumption is commonly used in the literature for the arrival process, the
service process, and the abandonment process (Kim and Whitt (2014), Ingolfsson et al.
(2007), Whitt (1991), Garnett et al. (2002)). Kim and Whitt (2014) largely justify this
assumption for the arrival process, whereas Zeltyn and Mandelbaum (2005) and Hueter and
Swart (1998) use empirical data of an emergency department and a restaurant setting to
justify the use of an exponential service time distribution. Yet, in many realistic settings,
the exponential assumption does not hold for the service and/or abandonment processes.
For instance, Brown et al. (2005) report lognormal distributions and Castillo et al. (2009)
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report Erlang distributed service times and Mandelbaum and Zeltyn (2013) report good fits
for the abandonment time distribution with with Log-Pearson III and generalized gamma
distributions.

Moreover, many existing models in the literature implicitly assume a preemptive service
discipline, such that service is interrupted and customers rejoin the queue when a server
leaves. An exhaustive service policy, where servers complete their current service before
leaving, is often more appropriate (especially in service systems with human customers and
servers). This feature, however, is frequently overlooked in the literature (Ingolfsson et al.,
2007; Chen and Henderson, 2001).

H
o

u
rl
y
 a

rr
iv

a
l 
ra

te

Hour of the day

0 2 4 6 8 10 12 14 16 18 20 22 24

1

2

3

4

Figure 1: Hourly average arrival rates at the emergency department of a Belgian regional
hospital

Capacity planning models rely on a performance evaluation method as a subroutine to
assess the solution quality of any given capacity vector. Therefore, performance analysis for
systems with time-varying arrivals is highly important when making capacity decisions. We
refer to Green et al. (2007), Whitt (2007), and Defraeye and Van Nieuwenhuyse (2011) for
extensive reviews on capacity planning in time-varying systems.

This article presents a Markov model that approximates the transient and periodic
steady-state behavior of the G(t)/G(t)/s(t) + G(t) queue with exhaustive service discipline
and time-varying arrival, service, and abandonment rates. The model evaluates the following
time-varying performance metrics: (1) the expected queue length, (2) the variance of the
queue length, (3) the expected number of abandonments, and (4) the virtual waiting time
distribution of a customer arriving at an arbitrary moment in time. Our approach extends
the work of Ingolfsson et al. (2007) and Ingolfsson (2005), who apply the randomization
method introduced by Jensen (1953) and Grassmann (1977) to systems with nonstationary
arrival rates. Ingolfsson et al. (2007) and Ingolfsson (2005) target M(t)/M/s(t) queues with
an exhaustive service policy (an outline on how to include customer impatience is provided,
yet not implemented).

We refer to our model as G-RAND since it uses the randomization method to analyze a
queue with general interarrival, service, and abandonment time distributions. To the best
of our knowledge, this is the first analytical model that studies a queue with an exhaustive
service policy, customer impatience, and generally distributed (time-varying) arrival, service,
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and abandonment rates. Our model does not rely on heavy-traffic or many-server asymp-
totics that are commonly used in the literature, and is intended for small- to medium-sized
systems with human servers (e.g., banks, retail stores, or small-scale call centers). Larger
systems can be analyzed as well, albeit at a higher computational cost.

The remainder of the article is organized as follows: Section 2 starts with a brief overview
of the literature on performance measurement in systems with time-varying arrivals. In
Section 3, we present an in-depth description of the Markov model itself. Section 4 evaluates
the accuracy of the model by means of a computational experiment. Finally, in Section 5,
we highlight the main conclusions and suggest directions for further research.

2 Related literature

Previous work has mainly focused on systems with time-varying arrival rates. In this section,
we provide a brief overview of the most popular performance evaluation methods for such
systems.

Stationary approximations are by far the most widely adopted approach. The arrival rate
that is fed into the stationary model can be, for instance, the instantaneous arrival rate (as
in the Pointwise Stationary Approximation or PSA (Green et al., 1991; Green and Kolesar,
1991; Whitt, 1991)) or the average arrival rate over a given interval (Stationary Independent
Period-by-Period or SIPP (Green et al., 2001; Whitt, 1991)). However, time-varying systems
typically display a time lag (or congestion lag): peaks in actual offered load lag the arrival
rate peaks, with an amount that is proportional to the expected service time (Green and
Kolesar, 1995; Thompson, 1993). Accounting for this lag can greatly improve the accuracy
of SIPP and PSA, particularly when service times are long (see the lagged variants of SIPP
and PSA (Green and Kolesar, 1997, 1995; Green et al., 2001)). The Modified Offered Load
(MOL) approximation accounts for the congestion lag by relying on analytically tractable
results for infinite server queues, which can be found in Eick et al. (1993a,b). Further details
on MOL can be found in Feldman et al. (2008), Jennings et al. (1996), Liu and Whitt (2009),
Jagerman (1975), Massey and Whitt (1994, 1997), and Davis et al. (1995). Though stationary
approximations are straightforward and generally applicable, additional challenges may arise
in complex systems, for which the stationary model itself is intractable. For instance, the
applicability of MOL to the M(t)/G/s(t) + G model necessarily relies on the availability
and accuracy of approximations for the corresponding stationary M/G/s+ G model (Whitt
(2005) and Iravani and Balciog̃lu (2008) provide approximations for this queue). We refer to
Green et al. (2007), Whitt (2007), and Defraeye and Van Nieuwenhuyse (2011) for further
references on the stationary approximations available in the literature.

For the M(t)/M/s(t) system, performance can be evaluated by numerically integrating the
Chapman-Kolmogorov forward equations, a set of Ordinary Differential Equations (ODEs)
that describe the behavior of the system (see Gross et al. (2008) for general background;
Ingolfsson et al. (2007) and Green and Soares (2007) provide a more thorough discussion).
This can be achieved using an ODE-solver such as the Euler or Runge-Kutta ODE solver
from the Matlab ODE Suite Shampine and Reichelt (1997). Ingolfsson et al. (2007) show
that this approach requires substantial computational effort and suggest using the random-
ization approach instead: this enables a drastic reduction in computational effort, at the
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cost of a slightly lower accuracy. The randomization (or uniformization) approach was orig-
inally developed for stationary systems (Jensen, 1953; Grassmann, 1977; Gross and Miller,
1984), but can be applied successfully to nonstationary queues (Ingolfsson, 2005; Ingolfsson
et al., 2007). In general, methods that use randomization or that numerically solve ODEs,
rely heavily on Markovian assumptions. The majority of these methods use an exponential
distribution for the service and/or abandonment process. Izady (2010) describes how these
methods can be extended to phase-type distributions, and concludes that the computational
effort increases considerably (as is confirmed by the results of our computational experiment,
see Section 4). Furthermore, these approaches currently do not take into account abandon-
ments (though Ingolfsson (2005) provides an outline on how to accommodate abandonments
in the randomization approach).

Closure approximations (Rothkopf and Oren, 1979; Clark, 1981; Taaffe and Ong, 1987)
approximate the set of forward differential equations by a small number of differential equa-
tions. Rothkopf and Oren (1979), for instance, use one for the mean and one for the variance
of the number in system at each time instant. However, as shown in Ingolfsson et al. (2007),
the approach is cumbersome to implement and is dominated by other methods (such as MOL
or randomization) in terms of both accuracy and computation speed.

Discrete-Time Modeling (DTM) is used for performance evaluation of systems with gen-
eral service time distributions (Chassioti and Worthington, 2004; Brahimi, 1990; Brahimi
and Worthington, 1991; Wall and Worthington, 1994, 2007). This approach approximates
the general service process by means of a discrete process using a two-moment matching
technique (Brahimi, 1990; Brahimi and Worthington, 1991). Wall and Worthington (2007)
report distinct advantages over stationary approximations such as MOL and PSA, partic-
ularly when temporal overloading is present. The complexity and computational effort of
DTM, however, increase drastically with the number of servers; Wall and Worthington (2007)
propose an approximation method to mitigate this effect. Note that the current DTM arti-
cles all study the M(t)/G/s system (i.e., they assume a constant number of servers and no
abandonments).

Deterministic fluid models (intended for systems that do not display stochasticity) can be
used as approximations to derive time-dependent performance in stochastic systems. These
methods rely on so-called “fluid scaling”: the system is scaled up (e.g., by multiplying the
arrival rates and the number of servers by the same factor) such that the stochastic ran-
domness decreases in importance relative to the system dynamics (see Helber and Henken
(2010) for an example). Fluid approximations are particularly useful to assess performance
in systems that are temporarily overloaded (Whitt, 2006a), but may fail to capture system
dynamics accurately in underloaded systems (Aguir et al., 2004; Altman et al., 2001; Jiménez
and Koole, 2004). Liu and Whitt (2010) suggest an approach that works for overloaded as
well as underloaded systems (separate models are applied in the two situations). Additional
literature on the use of fluid approximations for Markovian models, can be found in Man-
delbaum et al. (1995, 1998, 1999a,b, 2002), Ridley et al. (2003), and Jiménez and Koole
(2004). For systems with general service and/or abandonment time distributions, we refer
to the more recent work of Whitt (2006a) on G(t)/GI/s+ GI models (with state-dependent
arrival rates), Liu and Whitt (2010, 2011b, 2012a,b) on the G(t)/GI/s(t) + GI queue, Liu
and Whitt (2011a) for a network of G(t)/M(t)/s(t)+GI(t) queues, and references therein. A
key characteristic of fluid models is that arrivals and departures are considered as continuous

4

http://dx.doi.org/10.1016/j.peva.2014.07.025
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.peva.2014.07.025 • www.stefancreemers.be • info@stefancreemers.be

flows, rather than discrete processes (an assumption that becomes more acceptable as the
number of servers increases). Although Liu and Whitt (2010) report reasonably accurate
results for a system with 20 servers, the assumption of fluid scaling renders these approxima-
tions less applicable to small-scale settings where the discreteness of capacity is an essential
characteristic of the system.

Finally, discrete-event simulation is frequently used (see, e.g., (Law and Kelton, 2000) for
a comprehensive textbook). The appeal of simulation lies in its inherent flexibility to eval-
uate the performance of virtually any given system. As such, simulation proves particularly
useful in settings that are analytically intractable. On the downside, simulation tends to be
rather time-consuming, both in terms of runtime and time required to build the model. The
number of replications to ensure reliable accuracy may be extremely large; Koopman (1972)
put forward this argument to highlight why numerically solving ODEs should be preferred
over simulation. Although simulation models are commonly dedicated and context-specific
(e.g., (McGuire, 1994; Garćıa et al., 1995; Evans et al., 1996; Takakuwa and Shiozaki, 2004;
Hung et al., 2007; Ahmed and Alkhamis, 2009) describe simulation applications in emergency
departments with time-varying arrivals), efforts are made to develop generic simulation mod-
els (e.g., (Pitt, 1997; Sinreich and Marmor, 2004; Fletcher et al., 2007a,b; Gunal and Pidd,
2009)).

3 Model

In this section, we develop a phase-type (PH) approximation for the G(t)/G(t)/s(t) + G(t)
queue with exhaustive service discipline and abandonments. Analogous to the DTM models
discussed in the previous section, we observe the state of the system at discrete moments
in time. The main events that can take place at these observation moments are: arrivals,
departures (service completions or abandonments), and capacity changes (these basic pro-
cesses are defined in Section 3.1). Unlike the DTM models, however, we do not rely on
discrete distributions, but use continuous-time PH distributions to match the continuous
system processes. The PH distributions, described in Section 3.2, allow us to decompose a
general distribution into a set of exponential building blocks (so-called “phases”): because
each phase of a continuous-time PH distribution has an exponentially distributed visiting
time, the system processes are approximated by mixtures of exponential distributions. A
notable downside of DTM is that it requires keeping track of each server individually. In our
approach, however, this is not the case: due to the memoryless property of the exponential
distribution, it suffices to keep track of the number of active servers associated with a given
phase of the service process.

Sections 3.3–3.6 detail how the system state is updated from one observation moment to
the next. Our model requires a counting process to determine the number of arrivals in a
given interval (Section 3.3), a procedure to determine the probability that a given number
of customers advances a phase (Section 3.4), and a procedure to determine which customers
have experienced the longest waiting time (Section 3.5). An in-depth discussion of the model
logic is given in Section 3.6. Section 3.7 explains why G-RAND is an approximation.

Various time-varying performance metrics can be derived (i.e., the expected queue length,
the variance of the queue length, the expected number of abandonments, and the virtual
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waiting time distribution of a customer arriving at an arbitrary moment in time). They are
discussed in Section 3.8. The Appendix provides an overview of the main notations, used
throughout the article.

3.1 Basic Processes

We observe the state of the system at discrete, equidistant moments in time. The time
between observation moments determines the granularity (and hence the precision) of the
model and is denoted by ∆. Define T = {1, . . . , T}, the set of periods (where T is the last
period; the period that marks the end of the time horizon). There are four basic processes:
(I) the arrival process, (II) the service process, (III) the abandonment process, and (IV) the
staffing process. In the remainder of this article, Roman numerals I, II, III, and IV are used to
label these processes. At the start of any given period, the parameters of the arrival, service,
abandonment, and staffing process are allowed to change. If such a change takes place, the
start of the period corresponds to the start of a so-called “epoch”. For each process, we thus
partition the set of periods into a set of epochs, where each epoch is a set of consecutive
periods during which the process parameters do not change. Let D(·) =

{
1, 2, . . . , D(·)}

denote the set of epochs for a process (·), where D(·) is the total number of epochs over the
time horizon. For each process (·), define td, the first period in epoch d, where t1 = 0 and

ti < tj ≤ tD(·) ≤ T for all i, j : i < j ≤ D(·). Function φ
(·)
t = i maps a period t onto an

epoch i, where i is the ongoing epoch at the start of period t (i.e., there exists no epoch j
for which ti < tj ≤ t). Figure 2 further illustrates the relation between periods and epochs
for an arbitrary process (·).

∆

1
(1)

2
(1)

3
(2)

t -1
(D-1)

t
(D-1)

t+1
(D)

4
(3)

D2 3

T
(D)

1
START OF

EPOCH

PERIOD
(EPOCH)

Figure 2: Relation between periods and epochs

Each epoch d of the arrival, service, and abandonment process is characterized by an
independent distribution G

(·)
d that has mean µ

(·)
d and standard deviation σ

(·)
d . Each epoch of

the staffing process represents a so-called “staffing interval” (during which staffing remains
unchanged) and is associated with a number of servers sd : d ∈ D(IV). Note that ∆ has to be
chosen such that all staffing intervals are integer multiples of ∆. Figure 3 summarizes the
multi-server service system with time-varying interarrival times, service times, abandonment
times, and staffing levels.

3.2 Phase-type distributions

We adopt continuous-time PH distributions to approximate the general interarrival, service,
and abandonment time distributions. Continuous-time PH distributions use exponentially-
distributed building blocks to approximate any positive-valued continuous distribution with
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Figure 3: The G (t) /G (t) /s (t) + G (t) queueing system

arbitrary precision. More formally, the set of PH distributions is dense in the set of non-
negative distributions Nelson (1995) and, in theory, any nonnegative distribution can be
approximated arbitrarily closely by a PH distribution Osogami (2005). For further details
on PH distributions, refer to Neuts (1981), Nelson (1995), Latouche and Ramaswami (1999),
and Osogami (2005).

A PH distribution may be seen as the distribution of time until absorption in a Markov
chain with absorbing state 0 and state space {0, 1, . . . , Z − 1, Z}. It is fully characterized
by parameters τ and R. τ is the vector of probabilities to start the process in any of the Z
transient states (i.e., phases) and R is the transient state transition matrix. The infinitesimal
generator of the Markov chain representing the PH distribution is:

Q =

(
0 0
t R

)
,

where 0 is a zero matrix of appropriate dimension and t = −Re (with e a vector of ones of
appropriate size).

Various techniques exist to approximate a given distribution by means of a PH distribu-
tion (for an overview, refer to Osogami (2005), Osogami (2006), and Gerhardt and Nelson
(2009)). In this article, we adopt a two-moment matching procedure that uses a minimum
number of phases. Let C2 denote the squared coefficient of variation of the distribution we
want to approximate:

C2 = σ2µ−2. (1)

We distinguish three cases: (1) C2 = 1, (2) C2 > 1, and (3) C2 < 1. In the first case, we
approximate the distribution by means of an exponential distribution with rate parameter
λ = µ−1. The parameters of the corresponding PH distribution are:

τ = 1,
R = (−λ) .

In the second case (C2 > 1), we use a two-phase Coxian distribution where the rate
parameter of the first phase is determined by means of a scaling factor κ:

λ1 =
1

µκ
, (2)
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where κ ∈ [0, 1] and can be arbitrarily chosen. Unless mentioned otherwise, we assume
κ = 0.5. The expected value of the two-phase Coxian distribution is:

µ = λ−1
1 + βλ−1

2 , (3)

where λ2 is the exponential rate parameter of the second phase and β is the probability of
visiting the second phase. The variance of the two-phase Coxian distribution is:

σ2 = λ−2
1 + 2βλ−2

2 − β2λ−2
2 . (4)

When deriving parameters λ2 and β as a function of parameters µ, C2, and κ, we obtain:

λ2 =
2 (κ− 1)

µ (2κ− 1− C2)
, (5)

β =
2 (κ− 1)2

1 + C2 − 2κ
. (6)

The parameters of the corresponding PH distribution are:

τ = e1,

R =

(
−λ1 βλ1

0 −λ2

)
,

where e1 is the first unit vector.
In the third case (C2 < 1), we use a hypo-exponential distribution (a convolution of

exponential distributions whose parameters are allowed to differ; a generalization of the
Erlang distribution). The number of required phases equals:

Z = dC−2e. (7)

We assume that the first Z−1 phases of the hypo-exponential distribution are exponentially
distributed with rate parameter λ1. The last phase is exponentially distributed with rate
parameter λ2. The expected value and variance of the hypo-exponential distribution are:

µ = (Z − 1)λ−1
1 + λ−1

2 , (8)

σ2 = (Z − 1)λ−2
1 + λ−2

2 . (9)

When deriving parameters λ1 and λ2 as a function of parameters µ, C2, and Z, we obtain:

λ1 =
(Z − 1)−

√
(Z − 1) (ZC2 − 1)

µ (1− C2)
, (10)

λ2 =
1 +

√
(Z − 1) (ZC2 − 1)

µ (1− ZC2 + C2)
. (11)

The parameters of the corresponding PH distribution are:

τ = e1,

R =



−λ1 λ1 0 · · · 0 0 0
0 −λ1 λ1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −λ1 λ1 0
0 0 0 · · · 0 −λ1 λ1

0 0 0 · · · 0 0 −λ2


.
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For the three cases, Z equals 1, 2, and dC−2e respectively. Figure 4 provides an overview of
the PH distributions that are used in this article.

Exponential distribution (C2 = 1)

Hypo-exponential distribution (C2 < 1)

Two-phase Coxian distribution (C2 > 1)

1
(λ)

STATE
(RATE OUT)

0

2
(λ2)
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(λ1)

β

1-β

2
(λ1)

1
(λ1)

Z
(λ2)

0
Z-1
(λ1)

TRANSITION
PROBABILITY

...

Figure 4: Overview of PH distributions

Many other two-moment matching procedures are available in the literature. These pro-
cedures typically rely on a mixture of Erlang distributions if C2 is smaller than 1 (see Marie
(1980) and Johnson and Taaffe (1989, 1990), for instance) and use hyperexponential distri-
butions (e.g., Sauer and Chandy (1975) and Whitt (1982)) or two-phase Coxian distributions
(e.g., Altiok (1985)) if C2 is larger than 1. In Section 4.4 we further discuss the impact of
our fitting procedures on the accuracy of our model.

Note that, although in this article we limit ourselves to the use of simple PH distributions,
G-RAND can easily be extended to work with any acyclic, continuous-time PH distribution.
Therefore, our model can also be used to assess the queueing behavior of systems where
general processes are approximated by more complex PH distributions (albeit at a higher
computational cost, if more phases are required).

3.3 Counting process

We use a counting process to obtain Pr (x, v|u, d), the probability of having x arrivals during

an interval t (of length ∆) for which φ
(I)
t = d, and an arrival process at final phase v given that

the arrival process starts in phase u and is modeled using a PH distribution with parameters
τ

(I)
d and R

(I)
d .
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The counting process has continuous-time rate matrix (Ramaswami, 1988):

Qd =


Ld Fd 0 0 · · ·
0 Ld Fd 0 · · ·
0 0 Ld Fd · · ·
0 0 0 Ld · · ·
· · · · · · · · · · · · . . .

 ,

where Ld = R
(I)
d and Fd = t

(I)
d

(
τ

(I)
d

)>
. Cd holds the transition probabilities of the counting

process during an interval of length ∆ during epoch d, and may be obtained using random-
ization (see for instance Grassmann (1977) and Van Moorsel (1994)):

Cd = e∆Qd , (12)

=
∞∑
i=0

∆i

i!
Qi
d, (13)

= e−∆λd,max

∞∑
i=0

(∆λd,max)i

i!
Pi
d, (14)

where λd,max = −min (Diag (Rd)) and Pd is obtained as follows:

Pd =
Qd

λd,max

+ I, (15)

where I is an identity matrix of appropriate dimension.
The first block row of Cd holds the distribution of the number of arrivals (i.e., probabilities

Pr (x, v|u, d)). In order to obtain the first block row of Cd, it suffices to compute P
(i)
d,1, the

first block row of Pi
d, for all i ≥ 0. For i = 0, the first block row of Pi

d is defined as follows:

P
(0)
d,1 = (I 0d,1) , (16)

where 0d,1 is a zero-matrix with infinite number of columns and a number of rows equal to

the number of phases in the PH distribution with parameters τ
(I)
d and R

(I)
d . For i > 0, P

(i)
d,1 is

obtained using the Chapman-Kolmogorov equations (see Latouche and Ramaswami (1999)
and Tijms (2003) for instance):

P
(i)
d,1 =

(
Ld

λd,max

+ I

)
P

(i−1)
d,1 +

(
0d

Fd

λd,max

P
(i−1)
d,1

)
, (17)

where 0d is a square zero-matrix with a number of columns/rows equal to the number of

phases in the PH distribution with parameters τ
(I)
d and R

(I)
d .

3.4 Procedure to determine the probability of advancing a phase

The following procedure is used to determine the probability to advance a phase in the service
and abandonment processes. Let Pr (y|x, u, d)(·) denote the probability that y customers
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successfully complete phase u of process (·) during an interval of length ∆, given that x
customers are present in phase u at the start of the interval and that the process is modeled
using a PH distribution with parameters τ

(·)
d and R

(·)
d .

In order to compute Pr (y|x, u, d)(·), we use a Markov process that has infinitesimal gen-
erator:

Q
(·)
d,u =



−yλ(·)
d,u yλ

(·)
d,u · · · 0 0 0

−(y − 1)λ
(·)
d,u (y − 1)λ

(·)
d,u · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · −2λ
(·)
d,u 2λ

(·)
d,u 0

0 0 · · · 0 −λ(·)
d,u λ

(·)
d,u

0 0 · · · 0 0 0


,

where λ
(·)
d,u is the exponential rate that corresponds to the u-th phase of a PH distribution

with parameters τ
(·)
d and R

(·)
d . C

(·)
d,u holds the transition probabilities after an interval of

length ∆ during epoch d. The first row of C
(·)
d,u holds the distribution of the number of

successes (i.e., probabilities Pr (y|x, u, d)(·)) and may be obtained using an approach similar
to the one outlined in the Section 3.3.

3.5 Procedure to determine which customers have experienced
the longest waiting time

In this section, we determine Pr (bs|b, d), the probability that bs contains the distribution of
customers who have experienced the longest waiting time, given that (1) b is the distribution
of customers over the different phases of the abandonment process and (2) the abandonment

process is modeled using a PH distribution with parameters τ
(III)
d and R

(III)
d . In order to

obtain Pr (bs|b, d), we first need to determine Pr (eu|b, d), the probability that a customer
in abandonment phase u has waited the longest, given that the abandonment process is
modeled using a PH distribution with parameters τ

(III)
d and R

(III)
d (where eu is the u-th unit

vector).

If the abandonment process requires only a single phase (i.e., if Z
(III)
d = 1), Pr (e1|b, d) = 1

for all b ∈ B. If Z
(III)
d = 2, a customer in the first phase has waited longer than any of the

customers in the second phase if two criteria are met. First, the waiting time of the customer
has to be larger than the maximum time that was spent in the first phase by any of the
customers who are currently in the second phase. This occurs with probability:

b1

b1 + b2

,

where bu is the u-th entry of vector b. Second, the waiting time of the customer has to be
larger than the maximum time that has already been spent in the second phase by any of
the customers who are currently in the second phase. This occurs with probability:

∞∫
0

g
(
x|b1, λ

(III)
d,1

) x∫
0

g
(
y|b2, λ

(III)
d,2

)
dy dx,
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where g (x|n, λ) is the probability density function of the maximum of n i.i.d. exponential

distributions with rate parameter λ. Note that if λ
(III)
d,1 = λ

(III)
d,2 :

b1

b1 + b2

=

∞∫
0

g
(
x|b1, λ

(III)
d,1

) x∫
0

g
(
y|b2, λ

(III)
d,2

)
dy dx.

If λ
(III)
d,1 6= λ

(III)
d,2 , the probability can be evaluated numerically. Due to the memoryless

property of the exponential distribution, both events (i.e., meeting the first and the second
criterion) are independent and therefore, probabilities Pr (eu|b, d) can be obtained as follows:

Pr (e1|b, d) =
b1

b1 + b2

∞∫
0

g
(
x|b1, λ

(III)
d,1

) x∫
0

g
(
y|b2, λ

(III)
d,2

)
dy dx, (18)

Pr (e2|b, d) = 1− Pr (e1|b, d) . (19)

Note that:

• if b1 > 0 and b2 = 0, Pr (e1|b, d) = 1 and Pr (e2|b, d) = 0,

• if b1 = 0 and b2 > 0, Pr (e1|b, d) = 0 and Pr (e2|b, d) = 1,

• if b1 = 0 and b2 = 0, Pr (e1|b, d) = 0 and Pr (e2|b, d) = 0,

• if customers in the second phase do not visit the first phase, only the second criterion
has to be met.

If Z
(III)
d > 2, a similar logic may be applied in order to obtain Pr (eu|b, d).
Given Pr (eu|b, d), Pr (bs|b, d) can be computed recursively:

Pr (bs|b, d) =

Z
(III)
d∑
u=1

Pr (bs − eu|b, d) Pr (eu|b, d) . (20)

3.6 Model building blocks

Let (a,k,b)t denote the state of the system at the start of period t, where (1) a is the phase of
the arrival process, (2) k is a vector that holds the number of customers in each service phase,
and (3) b is a vector that holds the number of customers in each abandonment phase. K and
B are the sets of all possible vectors k and b respectively. In addition, define π (a,k,b)t, the
probability to visit state (a,k,b)t. The maximum dimension of the state space at the start

of any period depends on (1) the maximum number of phases of the arrival process Z
(I)
max,

(2) the maximum number of phases of the service process Z
(II)
max, (3) the maximum number

of phases of the abandonment process Z
(III)
max , (4) the maximum number of servers smax, and

(5) the maximum number of customers allowed in queue Qmax.
In order to determine the state of the system at the start of a period t, we propose a

stepwise procedure in which the arrival, service, and abandonment process are decomposed
and are processed independently. After each step, the state of the system is updated. The
stepwise procedure executes the following steps in sequence:
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1. Initialization.

2. Activate or deactivate servers if necessary.

3. Arrival of customers.

4. Service of customers.

5. Abandonment of customers.

To make a transition from a state (a,k,b)t towards a state (a,k,b)t+1, we manipulate the
statespace for each of these steps. We use temporary probability vectors π (1− δ, a,k,b)
and π (δ, a,k,b) (where δ is a binary variable, π (1− δ, a,k,b) is the probability vector that
represents the state of the system before manipulation, and π (δ, a,k,b) is the probability
vector that represents the state of the system after manipulation). Our method requires
the state of the system to be stored only before and after each manipulation, which enables
significant memory savings. This is of critical importance, as it is often infeasible to store
the state space over the entire time horizon (even for small instances). After each state space
manipulation, the binary variable δ is updated as follows: δ = 1− δ.

3.6.1 Initialization

During the initialization step, we initialize the temporary probability vectors. More formally,
we let π (1− δ, a, s,b) = 0 and π (δ, a, s,b) = π (a, s,b)t for all s ∈ S, b ∈ B, and a ∈{

1, . . . , Z
(I)
φt

}
.

3.6.2 Activate or deactivate servers

If the staffing process changes, two options arise: (1) new servers become available or (2)
the number of servers decreases.

If new servers become available, waiting customers are selected according to a first-come
first-serve (FCFS) policy (i.e., we select those customers who have experienced the longest
waiting time). From Section 3.5, we obtain probabilities Pr (bs|b, d). Using these probabili-
ties, we can determine the state of the system after new servers have become available (the
transition probability is indicated above the arrow):

(1− δ, a,k,b)
Pr(bs|b)

φ
(III)
t−−−−−−−→ (δ, a,k + nbse1,b− bs) ,

with nbs the sum of all entries in vector bs:

nbs = tr (bsI) , (21)

where tr is the matrix trace operator. We assume that customers who enter service, start in
the first phase of the service process, however, it is easy to adapt the model to allow service
to start in another phase as well.

In case of a decrease in capacity, we need to account for the exhaustive service policy:
servers complete a customer’s service, even if they are selected to leave. We adopt an
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approach that is similar to the technique used by Ingolfsson (2005): since servers that work
overtime no longer influence the performance of future customers, these are removed from
the system (along with the customers they serve). Although in reality, these customers are
still in the system, this modification is necessary to correctly calculate other performance
measures (such as the distribution of the virtual waiting time, see Section 3.8). Whereas
Ingolfsson (2005) randomly removes servers (which can be idle or busy), we accommodate
a decrease of x servers by first removing idle servers (if any). If insufficient idle servers are
available, c(x,k,t) active servers are removed:

c(x,k,t) = max (0, x− st + nk) , (22)

where nk = tr (kI) and st − nk represents the number of idle servers. Given a distribution
of customers k over the different phases of the service process, the probability to remove a
server that is processing a customer who is in phase u of his service process equals:

Pr (u|k) =
ku
nk

, (23)

where ku is the u-th entry of vector k. For each active server that is removed, the following
state-space manipulation is performed:

(1− δ, a,k,b)
Pr(u|k)−−−−→ (δ, a,k− eu,b) ,

The exhaustive service policy can be implemented in other ways, depending on which
servers are removed when capacity decreases: e.g., random selection, selecting idle servers,
or selecting servers with the smallest remaining processing times first. G-RAND is not
restricted to the implementation described above, and could be modified to accommodate
alternative disciplines.

3.6.3 Arrival, service, and abandonment of customers

From the counting process discussed in Section 3.3, we obtain probabilities Pr (x, v|u, d).
Using these probabilities, we can determine the state of the system after arrivals have taken
place. Because the size of the queue is limited to Qmax customers, we impose a reflecting
boundary (i.e., whenever x customers arrive, with x ≥ Qmax−nb, the resulting queue length
equals Qmax). More formally:

(1− δ, u,k,b)
Pr

(
x,v|u,φ(I)t

)
−−−−−−−−→

{
(δ, v,k,b + xe1) if Qmax ≥ nb + x,
(δ, v,k,b + (Qmax − nb) e1) otherwise.

Customers in service are only allowed to advance a single phase during an interval of
length ∆. The probabilities of advancing a phase (i.e., probabilities Pr (y|x, u, d)(·)) are
obtained from the procedure given in Section 3.4. For each phase, a state-space manipulation
is performed and phases are processed in reverse order. Customers who are in the last phase
of their service process complete service (note that Z

(II)
φt

is the last phase of the service
process):

(1− δ, a,k,b)
Pr(x|ku,u,φt)(II)−−−−−−−−−→

{
(δ, a,k− xeu,b) if ku > 0 ∧ u = Z

(II)
φt
,

(δ, a,k,b) otherwise.
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If the service process is modeled using a hypo-exponential distribution, customers who
are not in the last phase of their service process advance a phase:

(1− δ, a,k,b)
Pr(x|ku,u,φt)(II)−−−−−−−−−→

{
(δ, a,k− xeu + xeu+1,b) if ku > 0 ∧ 1 ≤ u < Z

(II)
φt
,

(δ, a,k,b) otherwise.

If the service process is modeled using a two-phase Coxian distribution, there is a proba-
bility that customers in the first phase complete service instead of advancing a phase. The
probability of completing service equals 1− β(II)

φt
. The probability that y out of x customers

complete service is binomially distributed and equals:

Pr (y|x, φt)(II) =
x!

y! (x− y)!

(
1− β(II)

φt

)y (
β

(II)
φt

)x−y
. (24)

The state-space transitions are summarized as follows:

(1− δ, a,k,b)
Pr(x|ku,u,φt)(II)Pr(y|x,φt)(II)−−−−−−−−−−−−−−−−→ (δ, a,k− xeu + (x− y) eu+1,b) .

After service completion, waiting customers are taken into service (i.e., servers are activated;
see Section 3.6.2).

With respect to the abandonment process, customers waiting in queue can only advance
a single abandonment phase during an interval of length ∆. The state space manipulations
are analogous to the ones described for the service process.

After the abandonment step, probabilities π (a,k,b)t+1 are readily available:

π (a,k,b)t+1 = π (δ, a,k,b) . (25)

3.7 Model discussion

We emphasize that the presented model is an approximation because of the following reasons:

• The general arrival, service, and abandonment processes are approximated by means
of PH distributions. Within each period, the time-varying rates are assumed to remain
constant.

• We assume a finite queue length (in heavily-loaded or in large-scale systems, the finite
queue size may need to be very large to maintain accuracy).

• The arrival, service, and abandonment process are decomposed and are processed in-
dependently, using a stepwise procedure. As a result, any interaction between the
different processes during an interval of length ∆ is not taken into account.

• We assume that any phase in the service and abandonment process takes at least one
interval to complete. Therefore, PH distributions that have short phases, require lower
values of ∆ in order to maintain accuracy.

Clearly, the error that is induced by the two last assumptions tends to zero as ∆ approaches
zero.
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3.8 Performance measures

Because of the computational effort involved, performance metrics are not necessarily eval-
uated at the start of every period t ∈ T. Instead, we measure the performance at intervals
w ∈ W, with W ⊆ T the set of performance intervals. Define ϕ

(·)
w = i, the function that

maps a performance interval w onto an epoch i, where i is the ongoing epoch of process
(·) at the start of performance interval w. We obtain the following performance measures:
(1) the time-average expected queue length, (2) the expected queue length at the start of
performance interval w, (3) the time-average variance of the expected queue length, (4) the
variance of the queue length at the start of performance interval w, (5) the expected number
of abandonments during performance interval w, and (6) the waiting time distribution of a
virtual customer arriving at the start of performance interval w. The virtual waiting time at
the start of period t is defined as the time a virtual customer spends in queue if he were to
arrive at the start of period t (cf. Gross et al. (2008) and Campello and Ingolfsson (2011)).
The expected queue length at the start of performance interval w equals:

Qw =

Z
(I)
ϕw∑
a=1

∑
k∈K

∑
b∈B

π (a,k,b)w nb. (26)

The time-average expected queue length is approximated by:

Q =
1

T

T∑
t=1

Qt, (27)

where Qt denotes the queue length at the start of period t.
The variance of the queue length at performance interval w equals:

Vw =

Z
(I)
ϕw∑
a=1

∑
k∈K

∑
b∈B

π (a,k,b)w (nb −Qw)2 . (28)

The time-average variance of the queue length is approximated by:

V =
1

T

T∑
t=1

Vt, (29)

where Vt denotes the variance of the queue length at the start of period t.
Let Aw denote the expected number of abandonments during performance interval w.

Aw can easily be computed during the abandonment step by keeping track of the transitions
in which customers abandon the queue.

Define Pr (Ww = h), the probability that a virtual customer who arrives at the start
of performance interval w receives service during interval w + h (i.e., the virtual customer
receives service after waiting h intervals of length ∆). In addition, let Wmax denote the
user-defined maximum waiting time over which probabilities Pr (Ww = h) are observed. In
order to obtain Pr (Ww = h), we use a quasi-death process and stop the arrival process at
the start of performance interval w. The first period during which a server becomes idle
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defines the waiting time of the virtual customer. More formally, the virtual waiting time
equals h∆ where h is the first integer for which Nw+h < sw+h (where Nw+h denotes the
number of customers in system after h∆ time units if the arrival process is stopped at the
start of performance interval w; note that Nw+h does not include customers serviced by
servers working overtime). The analysis of the quasi-death process requires a significant
computational effort, especially for large values of Wmax. Note, however, that the quasi-
death process does not need to be analyzed in order to compute the delay probability (the
delay probability is given by 1− Pr (Ww = 0) and may be obtained by setting Wmax = 0).

G-RAND enables both the transient and the periodic steady-state analysis of the
G(t)/G(t)/s(t) + G(t) queue. To reach steady state, the model may have to run for multiple
consecutive “cycles” (each with a length equal to the time horizon T∆). Let cmax denote the
number of cycles after which steady-state results are obtained. In addition, define εc, the
relative difference in queue lengths for cycles (c− 1) and c:

εc =
T∑
t=1

∣∣∣∣1− Qt,c
Qt,c−1

∣∣∣∣ , (30)

whereQt,c denotes the expected queue length at the start of period t in cycle c. If εc is smaller
than the (user-specified) parameter εmax, cycle c is the last cycle and steady-state results
have been obtained. In other words, cmax is the smallest integer for which εcmax < εmax. In
the case of a transient analysis, the user can specify the number of cycles that need to be
processed.

4 Results

We use a simulation study to assess the accuracy of the model over a set of 162 problem
instances. Both the Markov model and the simulation model are implemented in Visual
Studio C++. All tests are performed on an AMD Phenom II 3.40 GHz computer, with 4 GB
RAM.

In what follows, we first describe the computational experiment (Section 4.1) and discuss
the main drivers of model accuracy and computation speed (Section 4.2). Next, we evaluate
the model and elaborate further on the trade-off between accuracy and computation times
(Section 4.3). Finally, we discuss the impact of the PH matching procedure on the accuracy
of the model (Section 4.4).

4.1 Experimental setting

Table 1 provides an overview of the parameter settings that are used to construct the test
set. The parameters give rise to 162 problem instances that are representative of small- to
medium-sized systems. Each instance covers a one-day time horizon (i.e., 1,440 minutes)
which is divided into smaller periods of length ∆. In the experiment, ∆ ranges from 0.0625
to 1 minute. The arrival rate is piecewise constant over 10-minute intervals and the staffing
interval has a length of 30 minutes.
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The time-varying arrival rate λ
(I)
t is modeled as a discretized sine function with cycle equal

to T∆. Let RA(I) ≡ A/λ̄(I) denote the relative amplitude, with A the absolute amplitude
and λ̄(I) the average arrival rate over the time horizon. More formally:

λ
(I)
t =

λ̄(I)

2

(
2 + RA(I) sin

(
2πt

T∆

)
+ RA(I) sin

(
2π (t+ 1)

T∆

))
. (31)

Note that λ̄(I) is determined uniquely by the average capacity c̄, the average service rate
λ̄(II), and the average traffic intensity ρ̄ ≡ λ̄(I)/

(
c̄λ̄(II)

)
. Given the parameter settings in

Table 1, it follows that λ̄(I) ranges between 1 and 57 customers per hour. To limit the size
of the test set, we assume that all processes have the same C2 (i.e., 0.5, 1, or 2) and that
the distribution parameters of the service and the abandonment process remain constant
throughout the day. We emphasize that G-RAND is not limited to these C2-values and that
it is possible to analyze time-varying service and/or abandonment processes as well.

The staffing process is modeled as a discretized sine function with relative amplitude
RA(IV). As such:

ct =
c̄

2

(
2 + RA(IV) sin

(
2πt

T∆

)
+ RA(IV) sin

(
2π (t+ 1)

T∆

))
. (32)

Note that the capacity function is not shifted compared to the arrival rate function (which
could be done to account for the commonly observed congestion lag).

The size of the queue (i.e., Qmax) is either a characteristic of the system itself (e.g.,
a limited number of phone lines in a call center) or it is a function of the desired level
of accuracy (i.e., if Qmax is set too small, many of the arriving customers do not join the
queue and therefore do not receive service; they are “reflected”). In the experiment, we
set Qmax = 25. Over all problem instances that we tested, the probability of an arrival
being reflected is at most 0.00006 per cycle. Preliminary computational experiments may be
required to determine an appropriate value for Qmax in other settings.
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Parameter Values

Time horizon T∆ (in min) 1440
Period length ∆ (in min) {0.0625, 0.125, 0.25, 0.5, 1}
Epoch length (arrival process, in min) 10
Epoch length (staffing process, in min) 30
Performance interval length (in min) 1 for Qw, Vw, and Aw; 30 for Pr (Ww = h)

Relative amplitude RA(I) 0.5

Average service rate λ̄(II) (customers/hr) {1, 2, 6}
Average abandonment rate λ̄(III) {0.5λ̄(II), λ̄(II)}
Average capacity c̄ {2, 5, 10}
Relative amplitude RA(IV) 0.5

Average traffic intensity ρ̄ ≡ λ̄(I)/
(
c̄λ̄(II)

)
{0.5, 0.75, 0.95}

Squared coefficient of variation C2 {0.5, 1, 2}
Maximum waiting time Wmax (in min) 30
Maximum allowed deviation εmax 0.0001
Maximum queue length Qmax 25

Table 1: Parameter settings used in the computational experiment

We assessed the accuracy of the following time-varying performance metrics: (1) the
expected queue length Qw, (2) the variance of the queue length Vw, (3) the expected number
of abandonments Aw, and (4) the delay probability Pr (Ww > 0). The computation of the
delay probabilities themselves is generally straightforward; in our experiment, however, they
are calculated together with probabilities Pr (Ww = h), which requires a computationally
intensive quasi-death process. As such, we opt to measure the delay probabilities every 30
minutes. For all other performance measures (i.e., Qw, Vw, and Aw), we use a one-minute
performance interval.

The results of our model are compared with the results of an accurate simulation model
that uses 1,000,000 independent replications (the maximum halfwidth of the confidence in-
terval on the time-varying expected queue length is 0.00666). As in the Markov model, the
simulation starts with an empty system and continues until steady state is reached. Only
the data in the last cycle is retained, the other cycles may be considered as a warm-up pe-
riod. The simulation model uses the same distributions as G-RAND (i.e., hypo-exponential,
exponential, and two-phase Coxian distributions). This allows us to evaluate the accuracy
of the model without interference of the PH matching procedure (refer to Section 4.4 for a
discussion of the impact of the PH matching procedure on model accuracy). We emphasize
that G-RAND can easily be adapted to work with other PH distributions and that other
moment-matching approaches can be applied.

Let QSIM
t denote the simulated expected queue length at the start of period t. The

Relative Error (RE) of the expected queue length at the start of period t then can be
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expressed as:

REt =

∣∣QSIM
t −Qt

∣∣
QSIM
t

. (33)

To obtain an aggregate performance metric over the time horizon, REt is weighted with the
queue length. As such, the Weighted Relative Error (WRE) of the queue length for a given
problem instance is defined as follows:

WRE =
T∑
t=1

 QSIM
t

T∑
t=1

QSIM
t

REt

 =

T∑
t=1

∣∣QSIM
t −Qt

∣∣
T∑
t=1

QSIM
t

. (34)

The weighted relative error of the other metrics can be derived analogously.

4.2 Drivers of accuracy and computation speed

We distinguish three main drivers of accuracy and computation speed:

1. The length of ∆.

2. The size of the state space.

3. The approximations used in the model.

The choice of ∆ determines the frequency at which the system is observed. Evidently,
larger values of ∆ lead to shorter computation times. Accurate results, however, can only
be obtained if ∆ is sufficiently small. Because service and abandonment processes are only
allowed to advance a single phase during an interval of length ∆ (see Section 3.7), accuracy
will decrease if ∆ is set too large. In addition, the arrival, service, and abandonment process
are processed independently, using a stepwise procedure (see Section 3.6). As a result, the
interaction between the different processes is not taken into account and the accuracy of the
model decreases as more events are allowed to aggregate in between observation moments
(i.e., if ∆ is set too large and/or if the event frequency is too high).

The size of the state space only impacts the computation time. The state space grows
linearly with the maximum capacity, the maximum queue length, and the required number
of phases in the arrival, service, and abandonment processes.

As the performance measures are calculated at each performance interval, an increase in
the number of performance intervals will also increase the required computation time. This is
particularly evident when calculating the virtual waiting time distribution as it involves the
evaluation of a computationally intensive quasi-death process. Note that the computation
times reported in this study include the computation of all aforementioned performance
measures. Moreover, computation speed depends on the number of cycles needed to reach
steady state. In our experiment, however, the model consistently terminates after 4 cycles.
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4.3 Model accuracy and results

Figure 5(a) presents a box-and-whisker diagram of the WRE of the expected queue length,
for different values of ∆ (more detailed results can be found in Table 2). It is clear that
the proposed method yields highly accurate results, provided that ∆ is sufficiently small.
Figure 6(a) shows the required CPU times in terms of ∆. We observe a distinct trade-off
between accuracy and computational effort. In the remainder of this section, we further
analyze this trade-off.
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Figure 5: WRE of the expected queue length as a function of ∆ and C2

The lower quantiles of Figure 5(a) show that even for high values of ∆, the model can
yield accurate results. From Table 2 and Figure 5(b) it is clear that the performance is
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worst for the instances with C2 = 0.5. If C2 = 0.5, processes are modeled using a series
of exponential distributions (see Section 3.2). The mean of these exponential distributions
is smaller than the mean of the approximated distribution. As such, the event frequency
increases and smaller values of ∆ are required to obtain accurate results.

C2 = 0.5 C2 = 1 C2 = 2

∆ = 0.0625
Min 0.002 0.001 0.003
Avg 0.009 0.004 0.009
Max 0.040 0.018 0.021

∆ = 0.125
Min 0.002 0.001 0.003
Avg 0.012 0.005 0.009
Max 0.046 0.022 0.022

∆ = 0.25
Min 0.003 0.001 0.003
Avg 0.019 0.008 0.010
Max 0.067 0.032 0.028

∆ = 0.5
Min 0.007 0.002 0.003
Avg 0.036 0.015 0.014
Max 0.126 0.059 0.051

∆ = 1
Min 0.012 0.004 0.003
Avg 0.074 0.029 0.028
Max 0.277 0.120 0.117

Table 2: WRE of the expected queue length, as a function of C2
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Figure 6: CPU times as a function of ∆ and C2

Figure 6(b) and Table 3 show that the CPU times increase drastically for non-exponential
settings. This is no surprise, as the state space grows linearly with the number of phases.
Figure 6(a), however, shows that the CPU times are still smaller than those of the simulation
model.

Figure 7 presents the WRE for the variance of the queue length, the expected number of
abandonments, and the delay probability, as a function of ∆ and C2 (more detailed results
are shown in Table 4). The results are similar to what we observed for the expected queue
length (cf. Figures 5(a) and 5(b)): the WRE depends on the choice of ∆ and the model is
least accurate for C2 = 0.5. The expected number of abandonments and the delay probability
are markedly more accurate than the other metrics, hence, larger ∆-values may suffice to
maintain an acceptable level of accuracy. The largest WREs are observed for the variance
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C2 = 0.5 C2 = 1 C2 = 2

∆ = 0.0625
Min 37.44 3.354 149.2
Avg 1,336 53.71 1,115
Max 4,664 153.8 2,720

∆ = 0.125
Min 18.67 1.685 74.66
Avg 677.7 26.82 565.6
Max 2,411 76.94 1,372

∆ = 0.25
Min 9.407 0.827 37.21
Avg 346.7 13.43 279.5
Max 1,224 38.42 692.0

∆ = 0.5
Min 4.695 0.405 18.52
Avg 172.2 6.722 144.1
Max 614.6 19.28 347.5

∆ = 1
Min 2.324 0.202 9.235
Avg 86.78 3.348 70.44
Max 333.7 9.579 176.2

Simulation
Min 266.5 216.6 261.7
Avg 993.5 633.9 1,020
Max 3,978 2,101 3,951

Table 3: CPU time (in sec), as a function of C2

of the queue length.
Next, we evaluate how the parameters in Table 1 affect the trade-off between accuracy and

computation time. Figure 8 plots the trade-off between the accuracy and computation time of
the expected queue length, for different values of the average utilization, the average service,
the average capacity, and the average abandonment rate. In each plot, every observation
point represents the combination of WRE and CPU time for a given value of ∆, averaged
over all instances with a given parameter setting.
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Figure 7: WRE as a function of ∆,
and as a function of C2 (for ∆ = 0.0625)
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Figure 8: Trade-off between accuracy and computation time (expected queue length)

Figures 8(a) and 8(c) show that lower utilizations and/or capacity levels require less
computational effort. This is not surprising, as lower utilizations and/or capacity levels
also result in a smaller state space. The average service rate (see Figure 8(b)) and the
average abandonment rate (see Figure 8(d)) do not impact the required computational effort.
Figure 8(a) shows that lower utilizations result in a smaller accuracy for larger values of ∆. If
utilization is low, the interaction between processes becomes more and more important and
smaller values of ∆ are required in order to maintain accuracy (see Section 4.2). Figure 8(b)
and 8(c) show that smaller service rates and/or capacity yield a better accuracy. Again,
this is not surprising, as a decrease in service rate and/or capacity results in a smaller event
frequency. Figure 8(d) shows that the abandonment rate does not impact the computational
effort required to obtain a given level of accuracy. On the one hand, small abandonment
rates decrease the event frequency. They, however, also increase the utilization.

We can conclude that the trade-off between accuracy and computation time is mainly
influenced by (1) the event frequency, (2) the C2-values of the arrival, service, and abandon-
ment process, and (3) the size of the state space. As a result, the model is most effective
in settings with low service rate and/or low capacity (although other settings can also be
accurately analyzed).

27

http://dx.doi.org/10.1016/j.peva.2014.07.025
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.peva.2014.07.025 • www.stefancreemers.be • info@stefancreemers.be

4.4 Impact of the PH matching procedure on model accuracy

In this section, we evaluate the impact of the PH matching procedures introduced in Sec-
tion 3.2 on the accuracy of G-RAND. For this purpose, we replicate the experiment outlined
in Section 4.1, using a lognormal distribution for the service and/or abandonment process.
We use an exponential distribution to model the arrival process (as is common in the aca-
demic literature (Whitt, 1991; Garnett et al., 2002; Ingolfsson et al., 2007); Kim and Whitt
(2014) show that this assumption is consistent with empirical arrival processes observed in
call centers and emergency departments). In order to simulate the lognormal service and/or
abandonment process, we adopt the following two-moment matching procedure:

σln =
√

ln (1 + C2), (35)

µln = ln (µ)− σ2
ln

2
, (36)

where σln and µln are the shape and location parameter of the lognormal distribution re-
spectively. Note that the skewness and excess kurtosis of the lognormal distribution only
depend on σln and hence, are defined by C2 (i.e., no matter the mean, the skewness and
excess kurtosis remain the same as long as C2 does not change). The same holds for the PH
distributions defined in Section 3.2. Table 5 compares the skewness and the excess kurtosis
of the lognormal distribution (used in the simulation) and the PH distributions (used in G-
RAND; for the two-phase Coxian distribution, we used a scaling factor κ = 0.5). It is clear
that significant differences exist. In what follows, we analyze how these differences impact
performance and explore how accuracy can be improved.

Lognormal distribution PH distribution

C2 Skewness Excess kurtosis Skewness Excess kurtosis

0.5 2.475 12.56 1.414 3.000
1 4.000 38.00 2.000 6.000
2 7.071 156.0 3.359 16.50

Table 5: Skewness and excess kurtosis of the lognormal distribution and the PH
distributions for various values of C2

Each instance is simulated using 1,000,000 independent replications, such that the con-
fidence interval halfwidths on the time-varying expected queue lengths are sufficiently small
to conclude that the simulated metric closely approximates the “true” value (as is shown in
Table 6 the largest confidence interval halfwidth is 0.00923).
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Simulated queue C2 = 0.5 C2 = 1 C2 = 2

PH(t)/PH(t)/s(t) + PH(t)
Min 0.00005 0.00016 0.00026
Avg 0.00157 0.00180 0.00204
Max 0.00663 0.00617 0.00666

M(t)/LN(t)/s(t) + LN(t)
Min 0.00020 0.00017 0.00014
Avg 0.00222 0.00203 0.00182
Max 0.00921 0.00794 0.00664

M(t)/LN(t)/s(t) + PH(t)
Min 0.00020 0.00017 0.00014
Avg 0.00224 0.00208 0.00189
Max 0.00923 0.00810 0.00698

M(t)/PH(t)/s(t) + LN(t)
Min 0.00019 0.00015 0.00012
Avg 0.00206 0.00174 0.00159
Max 0.00790 0.00599 0.00535

Table 6: Halfwidth of the confidence interval on the time-varying expected queue lengths
for different simulated queues

Table 7 reports the WRE of the expected queue length for different values of ∆ and for
different queues. The high WREs show that for the lognormal distribution, a simple two-
moment matching procedure might not be sufficient to obtain accurate results. Moreover,
the table reveals that the error introduced by the PH approximation cannot be compensated
for by a decrease in the granularity parameter ∆. Table 7 also shows that the service
process is least sensitive to the PH approximation. This seems to confirms the findings of
Chassioti and Worthington (2004) and Chassioti et al. (2013), who suggest that, in systems
with nonstationary demand and capacity, the second and higher moments of the service
time distribution are relatively unimportant (note that (Chassioti and Worthington, 2004;
Chassioti et al., 2013) study systems where customers balk rather than renege from the
queue). In addition, our results suggest that the higher moments of the abandonment time
distribution play an important role when determining the performance of a system with
nonstationary demand and capacity.

To further explore the importance of the higher moments of the abandonment time
distribution, we perform an additional experiment in which we vary the scale parameter (i.e.,
κ) of the two-phase Coxian distribution. Table 8 lists the skewness and excess kurtosis for
various values of κ. A value equal to 0.9 yields the best fit with the lognormal distribution, as
is confirmed in Figure 9, which plots the cumulative distribution functions of the lognormal
distribution (with C2 = 2) and matching two-phase Coxian distributions. Table 9 presents
the WREs that result from the comparison of G-RAND (using different values of κ) and
the simulated M(t)/LN(t)/s(t) + LN(t) queue. It is clear that the accuracy can be increased
through an adequate choice of κ (i.e., through a better matching of the higher moments of
the abandonment time distribution).
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C2 Skewness Excess Kurtosis

κ = 0.1 2 2.463 8.506
κ = 0.2 2 2.643 9.767
κ = 0.3 2 2.844 11.38
κ = 0.4 2 3.076 13.51
κ = 0.5 2 3.359 16.50
κ = 0.6 2 3.730 21.07
κ = 0.7 2 4.278 29.15
κ = 0.8 2 5.268 47.82
κ = 0.9∗ 2 8.026 127.4
κ = 0.95 2 13.38 397.8

Lognormal 2 7.071 156.0

Table 8: Distribution moments of the two-phase Coxian distribution with C2 = 2.0 for
various values of κ (∗: best fit with lognormal distribution)
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Figure 9: Cumulative distribution functions of the lognormal distribution (with C2 = 2)
and matching two-phase Coxian distributions (for various values of κ)
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κ(III) WRE
Min Avg Max

κ = 0.1 0.065 0.259 0.500
κ = 0.2 0.056 0.213 0.414
κ = 0.3 0.046 0.176 0.347
κ = 0.4 0.036 0.146 0.293
κ = 0.5 0.026 0.120 0.250
κ = 0.6 0.017 0.098 0.214
κ = 0.7 0.009 0.077 0.183
κ = 0.8 0.010 0.059 0.153
κ = 0.9 0.012 0.048 0.127
κ = 0.95 0.017 0.052 0.147

Table 9: WRE of the expected queue length for various values of κ(III) and for the
M(t)/LN(t)/s(t) + LN(t) queue where C2 = 2 and ∆ = 0.25

We conclude that caution is advised when the higher moments of the abandonment time
distribution are not adequately matched by the PH distributions. Note, however, that if
the proper value of κ is selected, good results can still be obtained for C2 > 1. Moreover,
G-RAND can easily be extended to work with any acyclic, continuous-time PH distribution.

5 Conclusions and directions for further research

In this article, we have presented a Markov model that approximates the transient and
periodic steady-state behavior of the G(t)/G(t)/s(t) + G(t) queue with exhaustive service
policy. We refer to our model as G-RAND since it uses the randomization method to analyze
a general queue. G-RAND yields the following time-varying performance measures: (1) the
expected queue length, (2) the variance of the queue length, (3) the expected number of
abandonments, and (4) the virtual waiting time distribution of a customer arriving at an
arbitrary moment in time. Whereas most performance metrics can be computed with limited
effort, the computation of the virtual waiting time distribution is more demanding because
it requires the analysis of a death process.

A computational experiment has shown that results are highly accurate and that com-
putational effort remains limited, especially for small- to medium-sized systems. Problem
instances with a low service rate and/or a low average capacity typically required less com-
putation time to achieve a given level of accuracy. Other problem instances can be analyzed
as well, albeit at a higher computational cost. In contrast to most of the existing work,
G-RAND does not rely on heavy-traffic or many-server asymptotics.

We use acyclic phase-type (PH) distributions to approximate the general interarrival,
service, and abandonment time distributions. We adopt simple two-moment matching pro-
cedures, however, more complex PH distributions can be used as well (though this increases
computational effort, in particular when the number of phases increases). The performance
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of the model is best for settings that have moderate to high levels of process variability.
Lower levels of variability require more phases and hence more computation time.

An additional experiment has shown that skewness and excess kurtosis are of crucial
importance when modeling a system with nonstationary demand and capacity. Therefore,
caution is advised when the skewness and excess kurtosis of the abandonment time distri-
bution deviate from those of the PH distribution that is used to model the abandonment
process. The experiment also revealed that the service process is least sensitive to the PH
approximation (i.e., the higher moments of the service time distribution are of lesser impor-
tance).

Existing models are often incapable of accurately capturing the (time-varying) behavior
of small- to medium-scaled systems. G-RAND is especially suited for these settings. Banks,
retail stores, and emergency departments are just a few of the example systems that may
benefit from our model. Our approach could, for instance, be used to evaluate the per-
formance of alternative personnel schedules, or to determine the minimal required staffing
levels. We intend to further explore G-RAND’s applicability within the context of capacity
planning in future research. Another avenue for future research is to study the trade-off
between accuracy and CPU time. In our model, the ∆-parameter can be used to “tune”
this trade-off. In a simulation model, the trade-off can also be tuned, through the number
of replications. In order to identify the settings where our model offers a more favorable
trade-off than simulation does, an experiment is required in which both ∆ and the number
of replications are varied.
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Appendix: List of notation

∆ : Time in between two observation moments.

I : Arrival process.
II : Service process.
III : Abandonment process.
IV : Staffing process.

G
(·)
d : Distribution of process (·) during epoch d.

µ
(·)
d : Mean process time for process (·) during epoch d.

σ
(·)
d : Standard deviation of process times for process (·) during epoch d.
sd : Number of servers during epoch d of the staffing process.
C2 : Squared coefficient of variation.
λ : Exponential rate parameter.
Z : Number of phases in the PH distribution.
β : Probability to visit the second phase of the two-phase Coxian distribution.
τ : Vector of starting probabilities of a PH distributions.
R : Transient state transition matrix of a PH distribution.
Q : Infinitesimal generator.
t : Vector that holds the transition rates from transient states towards the

absorbing state.

P : Transition probability matrix.

Z
(·)
max : Maximum number of phases of process (·).

smax : Maximum number of servers.
Qmax : Maximum queue size.
a : Phase of the arrival process.
k : Distribution of customers over different phases of the service process.
nk : Sum of all entries in vector k.
K : Set of all vectors k.
b : Distribution of customers over different phases of the abandonment process.
nb : Sum of all entries in vector b.
B : Set of all vectors b.

Pr (x, v|u, d) : Probability of having x arrivals and an arrival process at final phase v given
that the arrival process starts in phase u.

Pr (y|x, u, d)
(·)

: Probability that y customers successfully complete phase u of process (·),
given that x customers are present in phase u at the start.

Pr (bs|b, d) : Probability that bs contains the distribution of customers who have experi-
enced the longest waiting time, conditional on b.

Pr (u|k) : Probability to remove a server that is processing a customer who is in phase
u.

c(x,k,t) : Number of active servers removed upon a decrease of x servers.

Pr (y|x, φt)(II) : Probability that y out of x customers complete service.
π (a,k,b)t : Probability to visit state (a,k,b)t.

Qw : Expected queue length at the start of performance interval w.
Vw : Variance of the expected queue length at performance interval w.
Aw : Expected number of abandonments during performance interval w.
Pr (Ww = h) : Probability that a virtual customer who arrives at the start of performance

interval w receives service after h∆ time units.
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