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Abstract

Healthcare systems differ intrinsically from manufacturing systems. As such, they

require a distinct modeling approach. In this article, we show how to construct

a queueing model of a general class of healthcare systems. We develop new

expressions to assess the impact of service outages and use the resulting model to

approximate patient flow times and to evaluate a number of practical applications.

We illustrate the devastating impact of service interruptions on patient flow times

and show the potential gains obtained by pooling hospital resources. In addition,

we present an optimization model to determine the optimal number of patients

to be treated during a service session.

Keywords:

• Operations Research [MeSH: L01.906.575]

• Efficiency, Organizational [MeSH: N04.452.227]

• Health Care Evaluation Mechanisms [MeSH: N05.715.360]

• Decision Support Systems, Management [MeSH: N04.452.515.135]

• Time Management [MeSH: N04.452.932]

• Queueing Theory

2



1 Introduction

An important feature of healthcare processes (or services in general) is that the demand

for resources is to a large extent unscheduled. As a consequence, there is a permanent

mismatch between the demand for a treatment and the available capacity. Moreover,

timely care is very important so interrupts are common in healthcare processes (the

sense of urgency is almost always present). No wonder that healthcare is riddled with

delays. No need to come up with a convincing example, we have all experienced that

phenomenon. Delays are highly undesirable, not only from a psychological point of

view (patient satisfaction) but also from an economic point of view. Government re-

imbursement systems are more and more based on a Justified Length of Stay (JLoS)

system. DRG’s (Diagnosis Related Groups) are characterized by a minimum and max-

imum length of stay (depending on parameters such as severity of the illness, age of

the patient, . . . ). If a patient is dismissed before the JLoS is over, the hospital still

collects a full reimbursement. On the other hand, if the patient remains in care for a

period which exceeds the limit of the JLoS, the hospital has to pay for the extra costs

involved. The JLoS of a DRG is determined in function of a national average length

of stay. The system stimulates hospitals to continuously improve their performance.

Moreover, improper scheduling and malfunctioning logistical systems cause length of

stays that are too long. Insurance companies may reject reimbursement of these “denied

days” because the delay is not medically necessary [1]. Delays also create a “hidden”

hospital in analogy with the hidden company. In other words, such a hospital creates

wasteful overhead.

Hall et al. [2] coined the term patient flow. It represents the ability of the healthcare

system to serve patients quickly, reliably and efficiently as they move through stages

of care. Queue and delay analysis can produce dramatic improvements in medical

performance, patient satisfaction and cost efficiency of healthcare. Healthcare systems

3



can be represented as a complex queueing network. The queueing models are helpful

to determine the capacity levels (and the allocation of capacity) needed to respond

to demands in a timely fashion (minimizing the delay). There is a demand side (the

patient mix and the associated variability in the arrival stream) and a supply side (the

hospital resources such as surgeons, nurses, operating rooms, waiting rooms, recovery,

imaging machines, laboratories) in any healthcare process. Moreover, both demand

and supply are inherently stochastic. This stochastic nature creates disturbances and

outages during the process. It is the combination of capacity analysis and variability

that makes queueing theory so attractive. The major objective is to identify factors

influencing the flow time of patients, to identify levers of improvement and to analyze

trade-offs.

In this article we try to address some of the issues mentioned above. The contribu-

tion of this article is threefold: (1) we provide the tools to model a complex hospital

system; (2) we develop new expressions to assess the impact of service outages; (3)

we present a number of practical applications. More specifically, we demonstrate the

impact on system performance resulting from the reduction of service outages and il-

lustrate the beneficial effects of pooling. Moreover, we develop an optimization model

that enables us to determine the optimal number of patients to be treated during a

service session (e.g. a consultation time block). The remainder of this article is struc-

tured as follows: in section 2 we discuss features that make the modeling of a hospital

system more difficult than the modeling of a typical industrial manufacturing process.

In section 3 we model a hospital queueing system. In section 4 we provide a numerical

example and we discuss a number of practical applications. Section 5 concludes.
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2 Problem description

Queueing models have been applied in numerous industrial settings and service indus-

tries. The number of applications in healthcare, however, is relatively small. This is

probably due to a number of unique healthcare related features that make queueing

problems particularly difficult to solve. In this section, we will review these features

and where appropriate we will shortly discuss the methodological impact.

Before we dig into this issue, let’s first discuss two important modeling issues in

healthcare: the performance measures and the issue of pooled capacity.

The performance measures in healthcare systems focus on internal and external

delays. The internal delay refers to the sojourn time of patients inside the hospital before

treatment. The external delay refers to the phenomenon of waiting lists. Manufacturing

systems may buffer with finished goods inventory, service systems rely more on time

buffers and capacity buffers. Another important performance measure is related to the

target occupancy (utilization) levels of resources. Average occupancy targets are often

preferred by government and other institutional agents. Hereby, higher occupancy levels

are preferred, but this results in longer delays. We are often confronted with conflicting

objectives. Instead of determining capacity needs based on (target) occupancy levels,

it is preferable to focus on delays. The key issue in delay has to do with the tail

probability of the waiting time. The tail probability refers to the probability that a

patient has to wait more than a specified time interval. Capacity needs (e.g. staffing)

of an emergency department should be based on an upper bound on the fraction of

patients who experience a delay of more than a specific time interval before receiving

care from a physician [3]. The second modeling issue has to do with pooling. In general,

pooling refers to the phenomenon that available inventory or capacity is shared among

various sources of demand (well known examples are location pooling, commonality or

flexible capacity). Pooling is based on the principle of aggregation and mostly comes
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down to the fact that we can handle uncertainty with less inventory or capacity. In

healthcare systems, resources are usually dedicated to specific patient types, hospitals

have separate units or departments by diagnostic type and bed flexibility is almost

non-existing. As a result, pooling is absent. This explains the fact that most queueing

models reported in the literature are dealing with parts of the hospital. Queueing

models can be used to model hospital wide systems and to evaluate the benefits of

greater versus less specialization of care units or other resources (scanners, labs, . . . ).

Let’s now turn to a number of unique healthcare related features making queueing

models in healthcare difficult to model and to solve.

Re-entry of patients and stochastic routings

During consultation, patients may be routed to different facilities. The routing of a

patient through hospital facilities is not deterministic. Instead, during the diagnosis

stage there is a probabilistic routing. Moreover, patients require in many cases several

consultations before e.g. surgery. Even after a patient is discharged from the hospital

after surgery and recovery, the patient is subjected to a number of follow-up consulta-

tions. In other words, the queueing model must take care of re-entry of patients creating

additional work on top of the new patients. In most cases, the re-entry is correlated.

Service sessions for consultation and surgery

In most queueing models time is considered as continuous and events are spread out over

this continuous time scale. In services in general and in healthcare more specifically,

resources are not continuously available. Instead, time is divided into “service sessions”

for consultation (e.g. twice a week) or surgery (e.g. one day per week). Consequently

we have to focus on service processes in which service takes place during predefined

service sessions. Vacation models observe the queueing behavior of such systems in
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which servers are available during certain time intervals and are on “vacation” during

the other time intervals.

Capacity related issues

Hospitals operate within strict business restrictions. Resources are usually very scarce

and consequently hospitals operate under high capacity utilization conditions. The

so-called heavy traffic conditions are present. Heavy traffic conditions assume that all

stations in the network are critically loaded. In such an environment, inaccurate results

have a large impact on resulting performance measures.

Modeling of absences, disturbances and interruptions

An important determinant of the flow time is variability. We distinguish two types of

variability. Natural variability is variability that is inherent to the system process. Nat-

ural variability is much more substantial in healthcare as compared to manufacturing

environments. Second, we have variability that can be related or assigned to a specific

external cause. This variability is caused by unplanned absences of medical staff or in-

terruptions during service operations. It is well known that variability induces waiting

time. As a result the time available during consultation is often exceeded. This in turn

is remedied by allowing overtime. Unfortunately, overtime modeling is a non-trivial

issue in queueing.

3 A hospital queueing system

The features discussed in the previous section considerably complicate the modeling

exercise. In order to demonstrate how to implement the features in a queueing model,

we use an example hospital queueing system. The example concerns a typical hos-
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Figure 1: Capacity structure of the hospital department

pital department involving consultation, surgery and recovery. The example we use

throughout this paper is inspired by a real life case of the orthopedic department of

the Middelheim hospital (Antwerp, Belgium) [4]. We omit in this paper all practical

data collection details of the case. We now and then provide numerical data to give the

reader an idea of the problem dimension. In our example, the department employs six

surgeons. Each of the surgeons is assigned a certain number of patients and no patient

crossover between surgeons is assumed to take place. The base case deals in other words

with the non-pooled capacity. Recovery occurs in an internal ward, in an external ward

or in the day hospital (depending on the disorder the patient is suffering from). In each

of the wards 25 beds are reserved for patients of the hospital department under study.

The capacity structure of the department is illustrated in Figure 1. Notwithstanding

the fact that every patient is unique, we impose some general assumptions regarding
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the treatment process of a patient visiting the department. More specifically, we as-

sume that every patient starts the treatment process with one or more consultations.

Next, surgery is performed and a number of follow-up consultations is initiated. Finally

the treatment process of a patient finishes and the patient leaves the hospital system.

We assume that only elective surgery takes place and that the consultation process is

appointment-based. Remark that it is possible to specify other patient routings (e.g.

patients who refuse surgery, patients that do not longer need recovery, . . . ). In this ex-

ample however, we make use of a simple patient routing structure in order to preserve

the transparency of the model.

With respect to the performance measures, we are interested in the total flow time

of a patient at a workstation (i.e. consultation, surgery or recovery). We define the

flow time as the total waiting time plus the processing time. With respect to the

waiting time of a patient, a distinction is made between the internal waiting time and

the external waiting time (for instance refer to Vissers et al. [5] and Hall et al. [1]).

More specifically, the internal waiting time is the time spent inside the hospital prior

to receiving service (at any of the workstations). The external waiting time is the time

between the making of an appointment and the arrival of a patient at the hospital.

The external waiting time can also be related to the “waiting list” phenomenon. As

such, the total flow time of a patient consists of: (1) the external waiting time; (2) the

internal waiting time; (3) the processing time. In the remainder of this text we will use

E [W ] to denote the expected total flow time of a patient.

The data collection may be described in the following way (see also Figure 1). We

start with a patient population (in our case we collected data on the consultation,

surgery and recovery process of 3,300 patients) and divide it into groups of similar

DRG’s. We construct 18 DRG groups and use index k, k ∈ {1, 2, . . . , K} for further

identification (refer to Roth et al. [6] and van Merode et al. [7] for a detailed treatment
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on patient classification methodology). Next, the patients are assigned an individual

surgeon (identified using index g, g ∈ {1, 2, . . . , G}). Surgeons as well as recovery wards

may be considered as hospital resources. We use index i, i ∈ {1, 2, . . . , I} to identify

these resources. The surgeons perform both consultation (i ∈ {1, 2, . . . , 6}) as well as

surgery (i ∈ {7, 8, . . . , 12}) tasks. Recovery takes place at the day hospital (i = 13), at

the internal ward (i = 14) or at the external ward (i = 15).

In what follows we develop the queueing model. First we provide the mathematical

derivations required to obtain the arrival- and natural process times. Next, we adapt

the model to include the effects of service outages, the availability of workstations and

the characteristics of the aggregate arrival process.

3.1 Modeling arrival rate and natural service times

The queueing model of the hospital department may be presented as a network of 12

G/G/1 workstations (six surgeons performing both consultation and surgery) and 3

G/G/m workstations (the recovery wards). The network is an open re-entry network

with stochastic routings and is modeled using the principles of the parametric decom-

position approach that was pioneered by Jackson [8]. The parametric decomposition

approach has further been refined by authors such as Kingman [9], Shanthikumar et

al. [10], Bitran et al. [11], Whitt [12], Lambrecht et al. [13] and Vandaele et al. [14].

While other approaches are available (e.g. Brownian motion queueing models), a pre-

vious study has shown that the parametric decomposition approach works best when

modeling complex hospital systems [4].

The queue discipline adhered at each of the stations is FCFS. Any variation in the

arrival of patients (e.g. the early, late, unannounced or not showing up of patients) is

presumed to be absorbed in the variance of the arrival process. The model assumes

infinite buffers to exist in front of every queue. Realizing that the buffers in front of
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the consultation and surgery workstation correspond to their respective waiting lists, it

would be incorrect to restrain them in size. In real life, if patients contact the hospital to

make an appointment for a consultation or a surgery, they will be issued an appointment

date no matter how far ahead in time this date might be (i.e. we assume patients not

to display any balking- or reneging-behavior when arriving or abiding at the queue).

Hence buffer capacities are virtually unlimited. With respect to the recovery wards,

one might argue that queue capacity is in fact limited. However, there are several

reasons that are able to question this assertion. Next to rendering the model highly

intractable, finite buffers do not necessarily correspond to reality since shortages of bed

capacity at the wards are solved at the local level and in general do not prolong the

sojourn time of a patient (this of course presumes the presence of unoccupied beds

somewhere in the hospital). Therefore we will assume infinite buffers at all stages of

the treatment process. Considering the multiclass re-entry environment of the queueing

network, aggregation of the arrival and service process is required in order to perform

a decomposition-based queueing analysis.

More formally, let i (i ∈ {1, . . . , I}) denote the workstation in the network, let k

(k ∈ {1, . . . , K}) denote the DRG group a patient belongs to and let g (g ∈ {1, . . . , G})

denote the surgeon a patient is assigned to. As such, we have KG classes of patients

visiting a set of I workstations. Let the pair (k, g) denote the class of a patient (i.e. a

patient of class (k, g) is assigned a surgeon g and belongs to DRG group k). Patients

belonging to different classes are allowed to differ in terms of interarrival times, service

times and routing. Assume interarrival times and service times of patients to be i.i.d.

if they belong to one and the same class and assume them to be independently (but

not necessarily identically) distributed otherwise. Let ηi(k,g) denote the external arrival

rate of a class (k, g) patient at workstation i (remark that external arrivals are only

assumed to take place at the consultation workstations). The aggregate external arrival
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rate at a workstation i equals

ηi =
K∑
k=1

G∑
g=1

ηi(k,g). (1)

Note that expression 1 is a general expression, most of the time a workstation will be

uniquely assigned to a single surgeon, making the summation over g redundant.

We assume that the interarrival times of the external arrivals are exponentially

distributed. Such an assumption poses only a slight restriction on the accuracy of the

model while it has been shown by Palm [15] and Khinchin [16] that the sum of a large

numbers of independent renewal processes (i.e. the arrival processes of the different

classes of patients) will tend to a Poisson process. Considering the multitude of classes

of patients, the approximation of the aggregate external arrival process by means of a

Poisson process should be accurate. In addition, Lariviere et al. [17] show that the

assumption of exponential interarrival times is reasonable in many service systems.

Let γi(k,g) denote the expected number of visits a class (k, g) patient will make to

workstation i (remark that only the consultation workstations are assumed to be visited

more than once). The aggregate arrival rate of patients at the consultation level equals

λi =
K∑
k=1

G∑
g=1

ηi(k,g)γi(k,g), ∀i ∈ {1, 2, . . . , 6} . (2)

Remark that in contrast to the aggregate external arrival rate, which was assumed

to be Poisson-distributed, the aggregate arrival rate (at each of the workstations) is

allowed to follow a general distribution. Further define the routing matrix R in which

the elements rij indicate the probability of a patient to travel from station i to station

j after service completion at station i. Adhering to standard conventions, we establish

a node (of index i = 0) from which external arrivals originate and which also serves as a

sink for patients leaving the hospital system. Let ri0 indicate the probability of leaving

the system when departing from station i. Conversely r0i implies the probability of an
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external arrival occurring at station i. The probabilities rij can be expressed as the the

proportion of the arrivals at station i that travel towards station j. When assuming

the stability of the queueing network, the law of conservation of flows (what comes in,

must go out) dictates

ri0 =
ηi
λi
. (3)

With respect to the surgery workstations, each patient visiting the hospital department

is subjected to surgery exactly once. As such, one can infer that

λi = ηi, ∀i ∈ {7, 8, . . . , 12} . (4)

Hence the probability of transition from the consultation level to the surgery level may

be defined as

rij =
ηi
λi
, ∀i ∈ {1, 2, . . . , 6} , j = i+ I. (5)

Finally, at the consultation level, the probability of re-entry equals

rii = 1− (ri0 + rij) = 1− 2ηi
λi
, ∀i ∈ {1, 2, . . . , 6} , j = i+ I. (6)

The routing probabilities of transferring from a surgery workstation i, i ∈ {6, 7, . . . , 12}

towards a recovery ward j, j ∈ {13, 14, 15} is obtained as follows

rij =
λ

(i)
j

λi
, ∀i ∈ {7, 8, . . . , 12} , ∀j ∈ {13, 14, 15} , (7)

where λ
(i)
j is the empirically observed arrival rate of patients at recovery workstation

j, j ∈ {13, 14, 15} originating from surgery workstation i, i ∈ {6, 7, . . . , 12}. Remark

that λ
(i)
j = 0, ∀i 3 {6, 7, . . . , 12} , ∀j 3 {13, 14, 15}. As such, the arrival rates at
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recovery equal

λj =
I∑
i=0

λ
(i)
j , ∀j ∈ {13, 14, 15} . (8)

From this we obtain

rij =
λ

(j+I)
i

λi
, ∀i ∈ {13, 14, 15} , ∀j ∈ {1, 2, . . . , 6} . (9)

All other routing probabilities stem directly from the structure of the model (e.g. the

probability of returning to the consultation workstation after the completion of recov-

ery equals unity). The subsequent set of expressions completely defines the routing

probabilities:

ri0 = ηi
λi
,

rii = δii − 2ηi
λi
,

rij = δij
ηi
λi
, ∀i ∈ {1, 2, . . . , 6} , i 6= j, j > 0,

rij =
λ
(i)
j

λi
, ∀i ∈ {7, 8, . . . , 12} , i 6= j, j > 0,

rij =
λ
(j+I)
i

λi
; ∀i ∈ {13, 14, 15} , i 6= j, j > 0,

(10)

where (δij = 1) if at least one of the patient classes travels from station i to station j

and (δij = 0) otherwise.

Remark that other routing structures give rise to other routing probabilities. The

routing structure and corresponding equations discussed in this section are only valid

under the previously imposed assumptions concerning patient flow.

With respect to the service times, let fi(k,g) (x) denote the natural service time prob-

ability density function of a class (k, g) patient visiting workstation i. Have 1/νi(k,g) and

σ2
νi(k,g)

represent the average natural service time for a class (k, g) patient at workstation

i and its variance respectively. The natural process time excludes random interruptions,

absences and any other external influence. Assume service times of different classes to

be independent but not necessarily identically distributed. The probability that a ran-
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domly picked unit in front of the workstation is of class (k, g) is given by λi(k,g)/λi,

where λi(k,g) is the total arrival rate of class (k, g) patients at workstation i. Define the

probability function of the aggregate natural service times at station i as follows

fi (x) =
K∑
k=1

G∑
g=1

λi(k,g)
λi

fi(k,g) (x) . (11)

As a result the average natural service time requirement of a unit in front of the work-

station amounts to

1

νi
=

K∑
k=1

G∑
g=1

λi(k,g)
λi

1

νi(k,g)
. (12)

When observing the variance of the aggregate natural service process, one can deduce

that

σ2
νi

=
K∑
k=1

G∑
g=1

λi(k,g)
λi

´ (
x− 1

νi

)2
fi(k,g) (x) dx,

= − 1
ν2
i

+
K∑
k=1

G∑
g=1

λi(k,g)
λi

(
σ2
νi(k,g)

+ 1
ν2
i(k,g)

)
.

(13)

We refer to σ2
νi

as a measure of the natural variability of the aggregate process times

at workstation i. The same result was obtained by Whitt [18] and has widely been

adopted in literature (for instance refer to Whitt [19] and Haskose et al. [20]).

3.2 Variability from preemptive and nonpreemptive outages

With respect to service outages in healthcare, a large body of literature exists. Outages

in a hospital setting have been the subject of discussion in Babe et al. [21], Liu et al.

[22], Chisholm et al. [23] and Chisholm et al. [24] among others. There is a consensus on

the harmful effects of outages on patient flow times as well as on the quality of service.

Outages result in congestion, unstable schedules and most importantly in overtime for

staff members. We refer to Easton et al. [25] for an excellent treatment of this issue. In

this section, we focus on unplanned absences of medical staff and interruptions during
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service operations. Unplanned absences and interruptions during service activities have

a major impact on flow times. Doctors and medical staff face various obligations which

they have to attend to (making morning rounds, answering phones, patient check-

ups, daily management, . . . ). In addition doctors often combine a hospital job and

private consultation. These phenomena may cause a variable arrival pattern at the

hospital [22] and may lead to interruptions during the treatment process (see Chisholm

et al. [23], Chisholm et al. [24] and Easton et al. [25]). It is clear that hospital

environments are characterized by substantial amounts of variability. As is argued

in the literature [26], variability induces waiting times. While in service industries

variability cannot be countered by means of inventory in the traditional sense, patients

will have to wait until capacity becomes available (see Vissers et al. [5], Vandaele et

al. [27] and Sethuraman et al. [28]). Besides the time buffer, hospitals often have to

rely on a capacity buffer to mitigate the impact of variability and to maintain required

service levels. In order to model service processes liable to outages, queueing theory

proves to be an ideal tool. With respect to service outages and server unreliability, we

face a vast amount of queueing literature. Surveys on the machine interference problem

and server unreliability may be found in Stecke et al. [29] and Haque et al. [30].

Unreliable servers are often modeled using vacation models. Over the past decades,

queueing systems with server vacations have received a lot of attention in the queueing

literature. Vacation models observe the queueing behavior of systems in which the

server begins a vacation (i.e. becomes unavailable) when certain conditions are met.

For instance, imagine a doctor’s office that has opening hours on Tuesday afternoons

and on Friday evenings. On Tuesday, after service completion of the last patient, the

doctor leaves on a “vacation” until Friday evening at which time service is resumed.

At the end of service on Friday, a vacation is initiated until next Tuesday afternoon.

We illustrate this process in Figure 2. Next to the modeling of planned absences (e.g.
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Figure 2: Illustration of a vacation model

a working schedule), vacation models may also be used to model unplanned server

interruptions (e.g. a doctor who is called away for an emergency). A wide variety of

vacation models exists. For a general overview, we refer to Doshi [31] and Takagi [32].

A more recent yet less general survey can be found in Vishnevskii et al. [33]. In this

work, however, we do not focus on vacation models. Instead, we consider an alternative,

more intuitive approach to model service outages. This approach was first suggested

by Vishnevskii et al. [26]. In their work, Hopp et al. [26] propose a transformation of

the service process times to account for service outages. The results of Hopp et al. [26]

are widely accepted in the literature (for instance refer to Lambrecht et al. [13]). In

this work, we develop new expressions to model the impact of service outages that are

peculiar to healthcare systems. In what follows, we first discuss the difference between

preemptive and nonpreemptive outages. Next, we provide the means to model them.

3.2.1 Outages, classification and impact

As was indicated previously, the service process of a patient may be interrupted or post-

poned. These outages will increase the natural service times. We call these increased,

adjusted service times, effective processing times. It is the total time “seen” or “expe-

rienced” by a patient at a workstation. The effective process time random variable is

of primary interest to determine flow times.

We distinguish between preemptive and nonpreemptive outages. Preemptive and
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nonpreemptive outages will impact the service process and will give rise to increased

levels of traffic intensity (resulting in the so-called effective utilization rate or effective

traffic intensity).

Let us first discuss the nonpreemptive outages. Nonpreemptive outages typically

occur between jobs, rather than during jobs. They occur at the beginning of each

service session (i.e. at the start of a consultation work shift) whenever a doctor or

another member of the medical staff is absent (e.g. due to late arrival). We may refer

to such an outage as unplanned absences and define the mean and variance of the

amount of time absent as 1/µs and σ2
s respectively (i.e. absence times are allowed to

follow a general distribution). Furthermore we assume an average number of patients

(represented by n) to arrive in between two consecutive absences. This is an important

feature of the model. Indeed, n may be considered as the number of patients in a service

session (e.g. a consultation work shift). Each start of a service session may induce a

delay due to an absence. In other words, the number of patients in a service session is a

decision variable and is comparable to a lot sizing decision. Evaluating different service

session sizes (i.e. different values of n) may provide key managerial insights. We will

address this issue in an upcoming section.

Next to nonpreemptive outages, we also allow for preemptive outages to take place.

Preemptive outages occur whenever a doctor is interrupted during a consultation activ-

ity. These interruptions will be modeled in an approach which builds on the tradition

set by Hopp et al. [26]. They are characterized by a Mean Time To Interrupt (τf ) and

a Mean Time To Resolve (τr). The model presented in Hopp et al. [26] presumes inter-

rupts to occur only during actual service time. However, in a hospital setting it is not

inconceivable that interrupts take place during the resolve time induced by a previous

interrupt as well. For instance, if the service process of a patient is interrupted by a

phone call, it is still possible for a doctor to be called away for an emergency, to receive
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another call, . . . .

In what follows, we present the main results on nonpreemptive as well as preemptive

outages. In a final subsection, we present results on the joint occurrence of nonpreemp-

tive and preemptive outages. In order to maintain transparency of the model and of

notation, we impose the following assumptions: (1) service outages only occur at the

consultation level (i.e. only workstations i, i ∈ {1, 2, . . . , 6} are affected); (2) for each

of the surgeons, the impact of outages is identical (i.e. 1/µs, σ2
s , n, τf and τr remain the

same for each of the workstations at the consultation level).

3.2.2 Nonpreemptive outages

We define a nonpreemptive outage to occur whenever the succession of two events is

based on the number of services performed in between (hence, setups, rework, mainte-

nance, . . . are all extensions that are able to capitalize on the technique discussed in this

section). Applied to our setting, we have that n patients are treated (on average) in

between two consecutive absence possibilities. Assume that the length of services and

absence times does not depend on the service history (i.e. they are independent of prior

services and absence times). The absence times themselves are distributed following

a probability density function fs (x). The average absence time and its variance are

represented by 1/µs and σ2
s . The service time of the nth patient includes part service

time, part absent time. We refer to the service time of the nth patient as the combined

service time. We illustrate these concepts in Figure 3. The probability density function

of the combined service times at a workstation i equals

fic (x+ y) =
K∑
k=1

G∑
g=1

λi(k,g)
λi

fi(k,g) (x) fs (y) . (14)
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Figure 3: The combined service time

One can consider the services that are preceded by an absent period as a separate

class of patients that has a probability 1/n of randomly being picked in front of the

workstation. The other services as a whole have a probability ((n−1)/n) of randomly

being picked. Therefore, we can define the mean aggregate service times including the

effect of absence times as follows

1
υi

=

[(
n−1
n

) K∑
k=1

G∑
g=1

λi(k,g)
λi

´
fi(k,g) (x)xdx

]
+[

1
n

K∑
k=1

G∑
g=1

λi(k,g)
λi

˜
fi(k,g) (x) fs (y) (x+ y) dydx

]
,

= 1
νi

+ 1
nµs

.

(15)

With respect to the variance of the aggregate service time (including absence times) at

the consultation workstations we develop the following expression

σ2
υi

=

[(
n−1
n

) K∑
k=1

G∑
g=1

λi(k,g)
λi

´
fi(k,g) (x)

(
x− 1

υi

)2
dx

]
+[

1
n

K∑
k=1

G∑
g=1

λi(k,g)
λi

˜
fi(k,g) (x) fs (y)

(
x+ y − 1

υi

)2
dydx

]
,

= σ2
νi

+ σ2
s

n
+ 1

µ2
s

(
n−1
n2

)
.

(16)

The above expression is equivalent to that of Hopp et al. [26] and is valid under

the assumption that the combined service times as well as ordinary service times are

independently distributed.
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3.2.3 Preemptive outages

We refer to service interruptions as preemptive outages. Doctors being called away

on emergencies, answering phone calls, . . . are typical examples. The average time

between two consecutive interrupts is defined as τf whereas τr refers to the average

time it takes to resolve an interruption. Preemptive outages prove to be more difficult

to model while they occur after the elapsing of a variable amount of time (i.e. a

mean time to interrupt τf ), rather than after a number of patients being processed.

Under the assumption that the time between two consecutive interrupts is exponentially

distributed, exact expressions for mean and variance have been obtained. With respect

to preemptive outages, we make a distinction between two different scenarios. On the

one hand, one might presume preemptive outages to occur only during actual service

time. As such preemptive outages do not take place during the resolve times induced by

previous outages. Remark that this does not imply that the service process of a single

patient cannot be interrupted more than once. On the other hand, one might assume

preemptive outages to occur during resolve times as well (e.g. as indicated previously,

doctors may be be interrupted when already engaged in resolving a previous interrupt).

While this latter instance can be seen as an extension of the former, we will first discuss

outages occurring exclusively during actual service time. Define τr0j as the resolve time

of the jth preemptive outage that occurred during the service process of one and the

same patient. The mean and variance of the resolve times are given by τr and σ2
r .

In addition, resolve times of different outages are assumed to be i.i.d.. The service

process of a patient thus faces the probability of encompassing several interrupts that

prolong its service duration. The service time of a patient (including interrupts) at a

workstation i can be expressed as

1

ωi
=

1

νi
+

J0∑
j=1

τr0j . (17)
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As such, the average service time 1/ωi incorporates both the natural service time 1/νi

as well as the resolve times of interrupts that occurred during service. Moreover, J0

denotes the number of preemptive outages that occurred during the service process of

a unit. J0 is a random variable that follows a Poisson distribution (i.e. we assume the

time between two consecutive interrupts to be exponentially distributed) and its mean

and variance both equal
(

1/(νiτf)
)
. We face a sum of random variables (the resolve

times τr0j ) in which the number of random variables (the number of interrupts J0), is a

random variable itself. Assume that J0 and τr0j (∀j ∈ N) are i.i.d. variables. In addition

assume the mean as well as the variance of τr0j to be equal for all j ∈ N. Therefore,

the mean and variance of the sum of Ji0 random variables τr0j can be expressed as [34]

E [S0] = E [J0]E
[
τr0j

]
, (18)

σ2
S0

= E [J0]σ
2
r + E

[
τr0j

]2
σ2
J0
, (19)

where S0 is the random variable representing the sum of J0 resolve times τr0j . In other

words we have that

S0 =
J0∑
j=1

τr0j . (20)

The mean and variance of the sum of resolve times can be defined as

E [S0] =
1

νi

τr
τf
, (21)

σ2
S0

=
1

νi

σ2
r + τ 2

r

τf
. (22)

The mean aggregate service time including the effect of interrupts may be expressed as

E
[

1

ωi

]
=

1

νi

τf + τr
τf

. (23)
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This corresponds to the expression presented in Hopp et al. [26] in which the natural

service time is divided by an availability factor in order to incorporate the effect of

interrupts. Next we have a look at the variance of the service times including the effect

of preemptive outages during service time. We start with the approximation of the

second moment:

E

[(
1

ωi

)2
]

=

(
σ2
νi

+
1

ν2
i

)(
1 +

τr
τf

)2

+ σ2
S0
. (24)

Using the expression for the second moment we obtain the variance of the service times

including the effect of interrupts

σ2
ωi

= σ2
νi

(
1 +

τr
τf

)2

+ σ2
S0
. (25)

This expression once more matches the formula derived in Hopp et al. [26]. The above

expressions hold if and only if the Poisson-distributed preemptive outages take place

during service itself. In what follows, we relax this assumption and allow for interrupts

to take place during the resolve times induced by previous interrupts.

In order to approach this problem, we divide the interrupts into different sets. Let

l (l ∈ N) denote the set index. We define τrlj to be the resolve time of the jth interrupt

belonging to the set of index l (i.e. the interrupt is said to be of order l). Without

loss of generality assume that interrupts of order 0 occurred during actual service,

interrupts of order 1 occurred during the resolve times of interrupts of order 0, . . . .

In general, interrupts of order l took place during the resolving of interrupts of order

(l − 1). Figure 4 provides further insight. In addition define Sl as the sum of resolve

times corresponding to interrupts of order l. We have that

Sl =
Jl∑
j=0

τrlj , (26)
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Figure 4: Interrupted service process of a single patient

where Jl is the number of interrupts belonging to the set of index l. Jl follows a Poisson

distribution and its mean and variance equal

E [Jl] = σ2
Jl

=
1

νiτf

(
τr
τf

)l
. (27)

One can infer that

E [Sl] =
τr
νiτf

(
τr
τf

)l
, (28)

σ2
Sl

=
τr
νiτf

(
τr
τf

)l (
σ2
r + τ 2

r

)
. (29)

Using the same reasoning applied previously, one can express the mean aggregate service

time including the effect of all order interrupts as follows

E
[

1

ωi

]
=

1

νi

τf
τf − τr

. (30)

Using these parameters, the second moment is expressed as

E

[(
1

ωi

)2
]

=

(
σ2
νi

+
1

ν2
i

)1 + 2
τr

τf − τr
+

(
τr

τf − τr

)2
+

1

νi

σ2
r + τ 2

r

τf − τr
. (31)
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As a result, the variance of the service time at a workstation i (including the impact of

all order interrupts) is given by

σ2
ωi

=
τ 2
f σ

2
νi

+ 1
νi

(τf − τr) (σ2
r + τ 2

r )

(τf − τr)2 . (32)

3.2.4 Combining preemptive and nonpreemptive outages

In many hospital settings, both preemptive and nonpreemptive outages may surface.

While it is impossible to interrupt the service process in the instance of a nonpreemptive

outage (e.g. a doctor who arrives late), we only consider the case in which both types

of outages cannot occur simultaneously. The average service time incorporating this

combined effect at a workstation i can be expressed as

1
ψi

=

[(
n−1
n

) K∑
k=1

G∑
g=1

λi(k,g)
λi

´
fif(k,g) (x)xdx

]
+[

1
n

K∑
k=1

G∑
g=1

λi(k,g)
λi

˜
fif(k,g) (x) fs (y) (x+ y) dydx

]
,

= 1
ωi

+ 1
nµs

,

(33)

where fif(k,g) (x) is the probability density function of consultation service times of a

class (k, g) patient at a workstation i including the effect of all order interrupts. Its

mean and variance are given by 1/ωi and σ2
ωi

respectively. We refer to 1/ψi as the

effective service time while it equals the service time experienced by the patient (and

as such includes the impact of outages). The variance of the effective service times at

a workstation i may be expressed as

σ2
ψi

=

[(
n−1
n

) K∑
k=1

G∑
g=1

λi(k,g)
λi

´
fif(k,g) (x)

(
x− 1

ψi

)2
dx

]
+[

1
n

K∑
k=1

G∑
g=1

λi(k,g)
λi

˜
fif(k,g) (x) fs (y)

(
x+ y − 1

ψi

)2
dydx

]
,

= σ2
ψi

= σ2
ωi

+ σ2
s

n
+ 1

µ2
s

(
n−1
n2

)
.

(34)
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These results allow us take service outages into account when assessing hospital perfor-

mance measures.

3.2.5 Including the time availability of workstations

It is well known that many services do not operate continuously over time. Consultation

and surgery typically operate during certain time intervals (service sessions) which

means that only a proportion of the total available time can be used effectively. Vacation

models are often applied to solve this problem. Another way to handle the problem

is to rescale all service processing times so that they fit a preset uniform time scale.

In this study we agreed on a 24 hours per day, 7 days per week time scale (basically

because this is the appropriate time scale for recovery processes). Let Ai denote the

availability of workstation i; Ai represents the available time in proportion to the preset

uniform time scale. For instance, if a workstation operates only 6 hours per day, then

the availability equals 25%.

When rescaling the service times established in the previous sections, we obtain the

total effective service times:

1
µi

= 1
Aiψi

, ∀i ∈ {1, 2, . . . , 6} ,
1
µi

= 1
Aiνi

∀i ∈ {7, 8, . . . , 15} ,

σ2
i =

σ2
ψi

A2
i
, ∀i ∈ {1, 2, . . . , 6} ,

σ2
i =

σ2
νi

A2
i

∀i ∈ {7, 8, . . . , 15} .

(35)

The above procedure results in the total effective service times including natural process

time, the effect of outages and the impact of availability of workstations. The mean

total effective service time and its variance can now be used to compute the squared

coefficient of variation

C2
si

= σ2
i µ

2
i . (36)
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3.2.6 Squared coefficient of variation of the aggregate arrival process

In order to approximate the parameters of the aggregate arrival process, some more

challenging arithmetics are needed. It was pointed out by Albin [35] that if at least

one of the interarrival time distributions, constituting the arrival process, does not

stem from a Poisson process, the resulting aggregate interarrival times do no longer

hold the property of independence. As a result the analytical analysis of the aggregate

arrival process becomes highly intractable. Therefore approximations will be adopted

to assess the variance and, more important, the squared coefficient of variation of the

aggregate arrival process. The squared coefficients of variation of the aggregate arrivals

at the different workstations will be extracted using a technique which was pioneered

by Shanthikumar et al. [10]. This technique implies the use of a set of linear equations

which has to be solved in order to obtain the squared coefficients of variation of the

arrivals. This approach is widely adopted in literature [36] and was later generalized

by Lambrecht et al. [13]. Using the technique that was outlined in Lambrecht et al.

[13], we are given a set of I equations:

−
I∑
i=1

λir
2
ij(1− ρ2

i )C
2
ai

+ λjC
2
aj

=
I∑
i=1

λirij(rijρ
2
iC

2
si

+ 1− rij) + ηjC
2
aηj
, (37)

where ηj and C2
aηj

denote the rate and squared coefficient of variation of the aggregate

external arrival process at station j respectively. In addition, ρi represents the effective

traffic intensity at workstation i and equals λi/µi. While all elements except the I squared

coefficients of variation are known, we are presented with a system of I equations

yielding I unknowns. Solving this set of linear equations provides us with the I unknown

squared coefficients of variation (i.e. C2
ai

;∀i ∈ {1, . . . , I}).

With all model parameters firmly defined, we now have a solid base to carry out

the performance evaluation of the hospital department. In the upcoming section we
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discuss a numerical example of the model presented above and provide some practical

applications.

4 Applications

In this section, we discuss a numerical example using the queueing model described in

the previous section. Next, we illustrate the devastating impact of service interruptions

on patient flow times. Subsequently we show the potential gains obtained by pooling

hospital resources. Finally, we present an optimization model to determine the optimal

number of patients to be treated during a service session.

4.1 Numerical example

The numerical example presented in this section builds on data gathered at the or-

thopedic department of the Middelheim hospital in Belgium. Using these empirical

data as inputs, the flow time of patients at the hospital department may be assessed

using so-called flow time expressions. A variety of flow time expressions are available

in queueing literature. A previous study has shown the Kingman equation [26] to yield

accurate results when assessing the flow times of patients in complex hospital systems

[4]. As such, in the remainder of this article, we will use the Kingman equation to

determine patient flow times. With respect to the Kingman equation, one can define

the expected flow time of a patient at workstation i as follows

E [Wi] =

(
C2
ai

+ C2
si

2

)ρ
√

2(mi+1)−1

i

mi (1− ρi)

 1

µi
+

1

µi
, (38)

where mi denotes the number of parallel servers at workstation i (mi = 25 ∀i ∈

{13, 14, 15}). If only a single server is present (i.e. at workstations i, i ∈ {1, 2, . . . , 12}),
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i 1 2 3 4 5 6
1/ψi 24.85 24.85 24.85 24.85 24.85 24.85
1/µi 310.7 690.4 310.7 167.9 155.3 248.5
C2
si

1.334 1.334 1.334 1.334 1.334 1.334
1/λi 329.8 741.5 317.0 174.5 167.5 268.8
C2
ai

1.026 1.418 1.051 0.759 0.752 0.952
Ai 0.080 0.036 0.080 0.148 0.160 0.100
ρi 0.942 0.931 0.980 0.962 0.927 0.925
E [Wi] (days) 4.360 9.402 12.90 3.219 1.547 2.593

Table I: Summary Table of the model results (workstations 1 to 6)

i 7 8 9 10 11 12
1/νi 110.0 96.20 89.17 57.50 56.35 93.18
1/µi 1048 2004 1351 845.7 593.2 1035
C2
si

0.266 0.406 0.203 0.171 0.165 0.274
1/λi 1, 111 2, 111 1, 380 883.4 620.5 1, 073
C2
ai

1.089 1.121 1.074 1.058 1.068 1.070
Ai 0.105 0.048 0.066 0.068 0.095 0.090
ρi 0.943 0.950 0.979 0.957 0.956 0.965
E [Wi] (days) 8.907 21.38 29.42 8.674 5.918 14.14

Table II: Summary Table of the model results (workstations 7 to 12)

no pooling is assumed to take place and the formula reduces to

E [Wi] =

(
C2
ai

+ C2
si

2

)(
ρi

1− ρi

)
1

µi
+

1

µi
. (39)

Using the empirical data, resulting flow times at each of the workstations are obtained.

The results are presented in Table I and Table II (all results are expressed in minutes

unless indicated otherwise). While no waiting occurs at the wards (i.e. the process of

recovery takes place immediately after surgery) the performance measures of worksta-

tions 13 to 15 are not included here. With respect to consultation, no distinction was

made between the different surgeons. One can observe that the effective service time
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(including the effect of interrupts and absences) amounts to 24.85 minutes (the natural

service time amounting to 15 minutes). The coefficient of variation equals 1.334 (the

natural coefficient of variation amounting to 0.6386). Arrival rates and their variances

depend on the number of patients visiting each surgeon. The utilization rates of the

surgeons are all very high, which translates into significant average patient flow times

varying from 1.5 days to 12.9 days.

Similar observations may be made with respect to surgery. Here we allow surgeons

to have different processing times depending on the type of surgery they perform. In

addition, observe the significantly longer flow times for patients at the surgery level.

4.2 The impact of interrupts

The impact of interrupts on medical practice has been observed by Harvey et al. [37],

Lehaney et al. [38], Chisholm et al. [24], Brixey et al. [39], France et al. [40], Volpp et al.

[41], Tucker et al. [42] and Gabow et al. [43] among others. All agree on the detrimental

effects of interrupts on patient flow time. In order to demonstrate these detrimental

effects, we present a number of scenarios in which we gradually reduce the impact of

interrupts. We build on the setting of the hospital department discussed previously.

To maintain transparency, we focus on a single consultation workstation (i.e. the only

workstations that are susceptible to interrupts during the service process). We adjust

the mean time to interrupt (i.e. τf ) at this workstation to assess the varying impact

of interrupts (all other model parameters remain unchanged). The results are given

in Table III. Note that we used the third workstation to study the impact of various

degrees of interrupts (the results corresponding to the numerical example presented in

section 4.1 are indicated in bold). Figure 5 illustrates the phenomenon graphically.

It is clear that heavy traffic systems (i.e. systems which operate under high workload)

benefit greatly from even a small reduction in utilization rate. Unfortunately, only
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τf E [W ] ρ τf E [W ] ρ τf E [W ] ρ
10.4 183.2 0.998 11.6 16.24 0.984 18 4.433 0.943
10.5 93.58 0.997 11.8 14.35 0.982 20 3.393 0.936
10.6 63.28 0.995 12.0 12.90 0.980 25 3.288 0.924
10.7 48.05 0.994 12.5 10.43 0.975 30 2.968 0.916
10.8 38.88 0.993 13.0 8.880 0.971 40 2.652 0.907
10.9 32.76 0.992 14.0 7.029 0.963 60 2.401 0.897
11.0 28.38 0.990 15.0 5.966 0.957 80 2.294 0.893
11.2 22.54 0.988 16.0 5.276 0.952
11.4 18.82 0.986 17.0 4.791 0.947

Table III: Impact of interrupts (expressed in minutes) on patient flow time (expressed
in days) at a single workstation

Figure 5: Varying impact of interrupts (expressed in minutes) and the effect on patient
flow times (expressed in days)
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limited means are available to achieve such a reduction in utilization rate. A variety of

options arise:

• The most obvious way to reduce the effective utilization is process improvement.

Continuous improvement and six sigma programs are very beneficial. Reducing

the frequency of interrupts can be classified in this category.

• Expand capacity; hospital resources such as operating theatres, scanners and

other equipment are often operating at maximum capacity. Expanding capacity

would be an effective means to reduce hospital workload. However, expanding

capacity is often very expensive or is simply impossible (e.g. due to legal con-

straints).

• Limit patient volumes; a reduction in hospital workload might also be achieved

by limiting the amount of patients receiving treatment. Pursuing this option

however, results in loss of hospital income and a reduced level of service.

In literature, valuable insights are provided that offer guidance in the quest to reduce the

impact of interrupts. For instance, Harvey et al. [37] suggest the pooling of paging of

doctors (next to telephone calls, paging calls are one of the largest sources of interrupts)

in order to decrease variability in individual paging patterns. France et al. [40] propose

the use of information systems (e.g. an electronic whiteboard) and team training to

enhance performance. Tucker et al. [42] suggest the redesign of treatment processes

(e.g. outsourcing of administrative tasks) in order to make service more robust against

preemptive outages. In addition Tucker et al. [42] and Volpp et al. [41] propose the

filtering of non-urgent communication towards medical staff. These and other practical

guidelines enable hospital decision makers to minimize the impact of interrupts on the

service process.
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4.3 The impact of pooling

Pooling refers to the aggregation (consolidation) of the demand from multiple items

into one, such that the consolidated demand can be satisfied from a single buffer. More

specifically, capacity pooling refers to the idea of sharing available capacity among

various sources of demand (e.g. patient classes). In a hospital setting this refers to the

sharing of expensive diagnostic equipment, wards or labs. In a non-pooling environment,

each resource fulfills its own demand, relying solely on its own capacity. In a pooled

environment, demand is aggregated and fulfilled from a single shared facility. A rich

literature on pooling in queueing systems exists. For an excellent overview, refer to

Benjaafar et al. [44] and Yu et al. [45].

It has long been know that pooling is beneficial to system performance. More

specifically, pooling allows to maintain a specified level of service quality (e.g. patient

flow times) with less capacity requirements. The beneficial effect of pooling stems from

the increased ability of the system to cope with variability. For instance, in pooled

systems, it is much less likely for the queue to be empty. As such, the impact of

variability in the arrival pattern of patients (patients may arrive early, late or may even

fail to show up at all) or in the service process of surgeons is minimized.

In this section, we demonstrate the impact of capacity pooling by means of a small

experiment. We build on the setting of the hospital department discussed in the pre-

vious sections. In the experiment the servers at the consultation and surgery level are

pooled. The following assumptions are imposed:

• Patients are treated by the first surgeon available for service, even if the patient

was assigned another surgeon upon first arrival at the hospital.

• Surgeon working schedules are identical and no structural constraints are imposed

(i.e. it should be possible to service 6 patients simultaneously).
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i 1 2
1/µi 246.90 995.87
C2
si

1.334 0.224
1/λi 43.56 173.2
C2
ai

0.996 1.075
Ai 0.101 0.079
ρi 0.944 0.958
E [Wi] (pooled) 0.518 1.612
E [Wi] (non-pooled) 4.523 12.47

Table IV: Summary table of the model results after pooling (consultation and surgery
workstations)

Returning to our example setting, the six consultation and the six surgery workstations

are replaced by a single consultation and a single surgery workstation respectively.

Each of these workstations has six parallel servers in operation. The resulting queueing

network contains five workstations i, i ∈ {1, 2, . . . , 5}. Let station 1 to 5 represent

consultation, surgery, day hospital, internal ward and external ward respectively. When

retaining all other characteristics of the setting discussed in the previous sections, one

can use the Kingman equation to obtain patient flow times. The resulting performance

measures are presented in Table IV (the non-pooled flow times are the weighted average

of the flow times observed at the consultation and surgery workstations presented in

section 4.1).

The benefits of pooling are clear. Without increasing capacity or altering any of the

other system characteristics (except of course the pooling of capacity) we are able to

reduce patient flow times at the consultation and surgery level by a factor of 8.73 and

7.74 respectively. Unfortunately, it is often impossible to achieve such a high degree of

pooling in a real life hospital system. One quickly runs into a number of limitations:

• Unique relation between patient and surgeon; patients will often refuse to consult

another surgeon.
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• Limited flexibility of resources; each surgeon has his own specialization. It is often

impossible, even for surgeons at the same department, to pass on jobs. As such,

the flexibility of surgeons is limited.

• Resources often operate at different time instances; for pooling to take place

surgeons need to operate at the same time instance. Due to busy schedules and

other limitations, this is not always possible.

• Structural characteristics may further limit the practical applicability of pooling.

For instance, if only two operating theatres are available, it is impossible to pool

the capacity of the six surgeons at the surgery level. In other words, the bottleneck

has shifted from the surgeons onto the number of available operating theatres.

Notwithstanding these constraints, it should be clear that even small amounts of pooling

may yield significant reductions in patient flow time. Therefore the pooling of hospital

resources is a worthwhile matter for further investigation.

4.4 Finding the optimal number of patients in a service session

The impact of absences at the start of a consultation or surgery session is discussed

in Babe et al. [21], Liu et al. [22], Liu et al. [46] and Easton et al. [25]. There is

a general agreement on the disruptive effect of absences on patient flow time. Easton

et al. [25] identify robust staffing, scheduling and recovery practices to minimize the

effects of absences. Liu et al. [46] acknowledge the importance of consultation and

surgery block size (i.e. the number of patients treated during a consultation session)

and propose a what-if simulation approach in order to determine the best block size. In

fact, the relationship between block size and patient flow time is akin to the relationship

between batch size and waiting time (in the presence of setups between batches in a

manufacturing setting). As such the convex relationship first described by Karmarkar

35



[47] may also be observed here. In this view, Vandaele et al. [48] determine the optimal

size of patient groups queueing in front of a nuclear resonance scanner. We build on the

model of Lambrecht et al. [49] in order to determine the optimal number of patients

that receives treatment during a service session.

Two conflicting effects may be observed:

• The grouping effect; referring to the time required to assemble a batch of size n.

The larger the batch size, the longer patients will have to wait before receiving

service.

• The saturation effect; the smaller the batch size, the more service sessions are

initiated, the larger the probability of having an absence of medical staff at the

start of a service session.

We illustrate these effects in Figure 6. The combination of both effects results in

a convex relationship, which implies that there is an optimal group size minimizing

average patient flow time. In what follows, we develop the mathematical model to

address the batch size decision problem. The objective is to determine the batch size

that minimizes the average patient flow time.

In this section we build on the third workstation discussed in the base case (other

workstations at the consultation and surgery level may also be analyzed in a similar

fashion). To maintain the transparency of the model, we omit the index i referring to

the original workstation used in this experiment. Other than the batching of patients,

the dynamics of the workstation remain unchanged (as compared to the numerical

example presented in section 4.1).

Once sufficient patients are available, a batch (i.e. the equivalent of a service session

workload) is created and is introduced into a queue (it is clear that this grouping does

not imply that patients have to wait physically in the hospital). Whenever the server
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Figure 6: Convex relationship between average patient flow time and batch size
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is idle, the batch as a whole receives service. After service, the batch is separated and

patients resume their individual routings. A batch of patients is characterized by:

• a batch size n,

• a batch arrival rate λb,

• a coefficient of variation of the interarrival times of the batches C2
ab

,

• a batch service rate µb,

• a coefficient of variation of the service times of the batches C2
eb

,

where

λb = nλ,

C2
ab

= C2
a

n
,

µb = nµ,

C2
eb

= C2
e

n

(40)

and λ, C2
a , µ, C2

e are the respective arrival rate, the squared coefficient of variation of

the interarrival times, the service rate and the squared coefficient of variation of the

service times of the individual patients visiting the third workstation.

The flow time of a patient in this system contains the following elements:

• The collection time; the time required until sufficient patients have arrived and a

batch may be processed. The larger the batch size, the longer it takes to gather

sufficient patients in order to perform a batch service.

• The waiting time of the batch itself; other batches (i.e. service sessions) may have

to be serviced first.

• The absence time; prior to the service of a batch of patients, there exists a proba-

bility that the surgeon (or another crucial hospital resource) is absent. The batch
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Figure 7: Visualization of the different phases of the batch flow time

of patients has to wait for the surgeon in order to receive service. This absence

time can be considered as a setup time for the batch.

• The actual processing of individual patients in the batch.

We visualize the flow time of a patient in Figure 7. The expected flow time of a single

patient in the system can be expressed as [49]:

E [W ] =
n− 1

2λ
+ E [Wq] +

1

µs
+
n+ 1

2µ
. (41)

This flow time clearly consists of four building blocks. The first term corresponds to

the average time a patient will have to wait until a group of size n has been formed

(i.e. the collection time). The term E [Wq] stands for the average time that a batch of

patients spends waiting in queue until the server becomes idle. We approximate E [Wq]

by means of the Kingman equation and obtain

E [Wq] =

(
C2
ab

+ C2
sb

2

)(
ρ

1− ρ

)
1

µb
, (42)
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where ρ is the effective utilization rate at the third workstation and is given by [49]:

ρ =
nλ

nµ+ µs
. (43)

The third term corresponds to the absence time that is incurred at the start of a service

session in which a batch of patients receives treatment. Both the second and third term

are the same for all patients in the batch. The last term indicates how much time a

patient spends on processing itself. At this point the model is complete and we can

formally state our optimization problem:

Minimize E [W ] , E [W ] = n−1
2λ

+ E [Wq] + 1
µs

+ n+1
2µ
,

s.t. ρ < 1,

n ≥ 1.

When using the setting of the hospital department outlined in the previous sections,

we are able to provide a numerical example. To maintain transparency, we select a single

consultation workstation and assess different values of n in order to obtain the optimal

number of patients to be treated during a service session. A summary of the resulting

figures is presented in Table V. An illustration is provided in Figure 8. One can deduce

that, for this particular workstation, the optimum is reached when treating 8 patients

during each service session. More precisely, given a set of input parameters (absence

probability, service- and interarrival times, . . . ) we are able to determine the optimal

number of patients to be treated during a service session.
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n 1/µb C2
eb

ρ E [W ]
3 82.063 0.2276 1.0787 NA
4 99.418 0.1707 0.9802 27.460
5 116.77 0.1365 0.9210 8.2226
6 134.13 0.1138 0.8815 6.3769
7 151.48 0.0975 0.8534 5.8782
8 168.84 0.0853 0.8322 5.7761
9 186.19 0.0758 0.8162 5.8441
10 203.54 0.0683 0.8027 6.0004
11 220.90 0.0621 0.7919 6.2086
12 238.25 0.0569 0.7830 6.4497
13 255.61 0.0525 0.7754 6.7132
14 272.96 0.0488 0.7689 6.9924
15 290.32 0.0455 0.7632 7.2831
16 307.67 0.0427 0.7583 7.5826
17 325.03 0.0402 0.7540 7.8888
18 342.38 0.0379 0.7501 8.2004
19 359.73 0.0359 0.7466 8.5162
20 377.09 0.0341 0.7435 8.8355

Table V: Summary table of the model results featuring different batch sizes

Figure 8: Finding the optimal number of patients
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5 Conclusion

In this article we discuss some of the features that differ when modeling healthcare

queueing models on the one hand and traditional manufacturing models on the other

hand. We show how to implement these features in a hospital queueing system. In ad-

dition, we develop new expressions to model service outages that are typical in services

in general and in healthcare in particular. The resulting queueing model is used to con-

struct a numerical example and to illustrate a number of practical applications. First

we demonstrate the detrimental effect of service interrupts on patient flow times. Next,

the beneficial effect of pooling hospital resources is illustrated. Finally, we develop an

optimization model that is able to determine the optimal number of patients treated

during a single service session.

Notwithstanding these accomplishments, there is still room for improvement. More

specifically, improvements may be made with respect to the modeling of time in queue-

ing systems. Open problems include the modeling of time-dependent demand rates,

increasing workload as waiting times increase (patients need to be monitored, receive

care, . . . ), . . . . Moreover, given the inherent high degree of variability in service times,

hospitals often use flexible working schedules that allow for overtime, variable server

capacity and other deviations from the standard queueing model topology. Such devi-

ations add to the complexity of the problem, making “time” a major modeling issue.
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