
Scheduling Markovian PERT networks with
maximum-NPV objective

Stefan Creemers, Roel Leus and Marc Lambrecht

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Business and Economics

KBI 0811

Scheduling Markovian PERT networks with

maximum-NPV objective

Stefan Creemers Roel Leus∗ Marc Lambrecht

Department of Decision Sciences and Information Management
Katholieke Universiteit Leuven, Belgium

We examine project scheduling with net-present-value objective and exponential activity
durations, using a continuous-time Markov decision chain. Based on a judicious parti-
tioning of the state space, we achieve a significant performance improvement compared
to the existing algorithms.

Keywords: project scheduling, net present value, stochastic activity durations, expo-
nential distribution.

1 Introduction

A project consists of a set of activities (or tasks) N = {0, 1, . . . , n}, which are to be pro-
cessed without interruption. The duration Di of each activity i is a random variable (r.v.);
the vector (D0, D1, . . . , Dn) is denoted by D. The set A is a strict order on N , i.e. an ir-
reflexive and transitive relation, which represents technological precedence constraints. The
activities 0 and n represent start and end of the project, respectively, and are the (unique)
least and greatest element of the partially ordered set (N,A). We use lowercase vector
d = (d0, d1, . . . , dn) to represent one particular realization (or sample, or scenario) of D.
Alternatively, when each duration Di is a constant, we use the same notation d. For a given
realization d, we can produce a schedule s, i.e., a vector of starting times (s0, s1, . . . , sn) with
si ≥ 0 for all i ∈ N . The schedule s is feasible if si + di ≤ sj for all (i, j) ∈ A.

In the absence of resource constraints, the minimum-makespan objective requires no real
scheduling effort: all activities are started as soon as their predecessors are completed. The
literature on this so-called PERT problem is usually concerned with the computation of
certain characteristics of the minimum project makespan (earliest project completion) when
the activity durations are random variables, mainly with exact computation, approximation
and bounding of the distribution function and the expected value [1, 4, 7]. A Markovian
PERT network is a PERT network with independent and exponentially distributed activity
durations. For such Markovian PERT networks, Kulkarni and Adlakha [6] describe an exact
method for deriving the distribution and moments of the earliest project completion time
using continuous-time Markov chains (CTMCs).

In this article, we focus on project scheduling with NPV (net present value) objective
and exponential durations [2, 10]. Each activity i ∈ N is associated with a cash flow ci,

∗Corresponding author: Roel Leus, Department of Decision Sciences and Information Management,
Katholieke Universiteit Leuven, Naamsestraat 69, 3000 Leuven, Belgium. Tel.: +32 16 32 69 67. Fax:
+32 16 32 66 24. E-mail: Roel.Leus@econ.kuleuven.be.

1

which is a rational number that may be positive or negative; this quantity is received or
paid at the start of the activity. In order to account for the time value of money, we define
r to be the applicable continuous discount rate: the present value of a cash flow c incurred
at time t equals ce−rt. Both Tilson et al. [10] and Buss and Rosenblatt [2] use the CTMC
described in [6] as a starting point for their algorithm. We achieve a significant performance
improvement compared to these existing approaches, based on a judicious partitioning of
the state space.

2 Problem statement

The execution of a project with stochastic durations can best be seen as a dynamic decision
process. A solution is a policy Π, which defines actions at decision times. Decision times are
typically t = 0 (the start of the project) and the completion times of activities; a tentative
next decision time can also be specified by the decision maker. An action can entail the start
of a set of activities that is ‘feasible’, so that a feasible schedule is constructed gradually
through time. Next to the input data of the problem instance, a decision at time t may only
use information (on activity-duration realizations) that has become available before or at
time t; this requirement is often referred to as the non-anticipativity constraint.

As soon as all activities are completed, the activity durations are known, yielding a re-
alization d of D. Consequently, every policy Π may alternatively be interpreted [5] as a
function Rn+1

≥ 7→ Rn+1
≥ that maps given samples d of activity durations to vectors s(d; Π)

of feasible activity starting times (schedules). For a given scenario d and policy Π, sn(d; Π)
denotes the makespan of the schedule. The earlier-mentioned PERT problem aims at char-
acterizing the r.v. sn(D; ΠES), where policy ΠES starts all activities as early as possible.
Contrary to e.g. the expected makespan, however, NPV is a non-regular measure of perfor-
mance: starting activities as early as possible is not necessarily optimal.

In this text we investigate the determination of an optimal scheduling policy for the
expected-NPV objective. In the special case where the durations have constant values d,
the objective function corresponding with a schedule s is the following:

max g(s,d) =
n∑

i=0

cie
−rsi .

Our goal in this article is to select a policy Π∗ within a specific class that maximizes
E[g(s(D; Π),D)], with E[·] the expectation operator with respect to D. The generality
of this problem statement suggests that optimization over the class of all policies will prob-
ably turn out to be computationally intractable. We therefore restrict our attention to a
subclass that has a simple combinatorial representation and where decision points are limited
in number: our solution space consists of all policies that start activities only at the end of
other activities (activity 0 is started at time 0).

3 The algorithm

We assume the durations of the activities i ∈ N \ {0, n} to be mutually independent expo-
nentially distributed r.v.s with mean 1

µi
, µi > 0. Section 3.1 briefly presents the state space

2

of our search procedure, Section 3.2 discusses how we partition this state space in order to
facilitate memory management, and the stochastic dynamic-programming (SDP) algorithm
that produces an optimal policy is the subject of Section 3.3.

3.1 State space

At any time instant t, each activity’s status is either idle (= unstarted), active (= in the
process of being executed) or finished ; we write Ωi(t) = 0, 1 or 2, respectively, for i ∈ N .
The state of the system is defined by the status of the individual activities and is represented
by vector Ω(t) = (Ω0(t), Ω1(t), . . . , Ωn(t)). State transitions take place each time an activity
finishes and are determined by the policy at hand. The project’s starting and finishing
conditions are ∀i ∈ N : Ωi(0) = 0 and ∀i ∈ N : Ωi(t) = 2, ∀t ≥ ω, respectively, where ω
indicates the project completion time. The problem of finding an optimal scheduling policy
corresponds to optimizing a discounted criterion in a continuous-time Markov decision chain
(CTMDC) on the state space Q, with Q containing all the states of the system that can be
visited by the transitions (which are called feasible states); the decision set is described in
Section 3.3.

An upper bound on |Q| is 3n. Enumerating all these 3n states is not recommendable,
because typically the majority of the states do not satisfy the precedence constraints. Tilson
et al. [10] develop a simple yet efficient algorithm to produce a set of possible states; this
set contains Q but may be strictly larger. Additionally, to the best of our knowledge, all
related studies in the literature reserve memory space to store the entire state space of
the CTMDC; Buss and Rosenblatt [2] point out that some method of decomposition to
reduce these memory requirements would allow for considerable efficiency enhancements.
In what follows, we present an algorithm that considerably improves upon the storage and
computational requirements of earlier algorithms by means of efficient creation of Q and
decomposition of the network of state transitions.

3.2 Uniformly directed cuts

Our algorithm consists of two main steps. The first step is discussed in this section, and
consists of the generation of all inclusion-maximal antichains of A (sets of activities that can
be executed in parallel); Kulkarni and Adlakha [6] refer to these sets as uniformly directed
cuts or UDCs, and we will maintain this term (although we work with activity-on-the-node
instead of activity-on-the-arc representation). In the second step of the algorithm we apply
a backward SDP-recursion to determine optimal decisions; this recursion is the subject of
Section 3.3.

Let U =
{
U1, U2, . . . , U|U|

}
denote the set of UDCs. Formally, U is the maximum-size

subset of the power set 2N whose elements U satisfy the following conditions:

(1) ∀{i, j} ⊂ U : (i, j) /∈ A ∧ (j, i) /∈ A,

(2) @u ∈ N \ U : U ∪ {u} satisfies condition (1).

We associate with each U ∈ U a rank number r(U) = |{i ∈ N : ∃j ∈ U |(i, j) ∈ A}|, which
counts the number of predecessor activities; the elements U are indexed in non-decreasing

3

1

2

3

4

7

5

6

8

9

10

11

0

Figure 1: Example project network.

7,8,9,101,2,3,4 2,3,4,5

1,3,4,6

3,4,5,6 4,5,6,7

3,5,6,8

1,3,10

5,6,7,8

3,5,8,10

5,7,8,10

110

3,6,8,9

2,3,9

6,7,8,9

3,8,9,10

Figure 2: All UDCs of the example project network.

rank r(U) (with arbitrary tiebreaker). Throughout Sections 3.2 and 3.3 we use the project
network depicted in Figure 1 as an illustration. All the corresponding elements of U are
represented in Figure 2; UDCs with the same rank have the same horizontal position (they
are in the same ‘column’).

In a similar way as in [9] for the generation of all minimal forbidden sets of an instance
of a resource-constrained scheduling problem, we apply a simple backtracking algorithm to
enumerate all UDCs. The subsets of N are enumerated in a tree T where each node w of T ,
except the root node, is associated with exactly one activity i ∈ N . If node w is associated
with activity j then w has a child node for each activity i = j + 1, . . . , n. In this way, there
is a one-to-one correspondence between the set of nodes of T and the power set 2N ; each
node w of the tree corresponds with a subset W ⊆ N of activities, for which the activities
are collected by traversing the tree from w to the root node. In order to obtain only the
UDCs and no other subsets, the tree T is pruned during this generic process: a node w is
discarded as soon as its associated activity i is comparable to an activity associated with at
least one of the ancestor nodes. The resulting tree is referred to as T (A).

The total number of UDCs can clearly be exponential in the number of activities, and
more efficient approaches for the enumeration may exist (cfr. [8]), but we content ourselves
with this simple algorithm for two reasons: (1) this enumeration is not the bottleneck in
the running time of the search procedure for optimal scheduling policies, and (2) during
the recursion that is applied to enumerate and prune the tree, additional information on
movement between UDCs (see infra) can be conveniently gathered.

4

...

.
.
.

.
.
.

.
.
.

...

.
.
.

.
.
.

.
.
.

...

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

...

.
.
.

...

0

1

3

41 2 3

2 3

4 5

4 5

6

6

7 8

(a) T

.
.
.

.
.
.

...0 41 2 3

2 3

3

3

44

4 6 5

10 9

(b) T (A)

Figure 3: The trees T and T (A) for the example project.

Each UDC U is associated with a set σ(U) of states in which one or more activities in
U are active and the remaining activities in N\U are either idle or finished: σ(U) contains
all states v ∈ Q with σ−1(v) = U ; the function σ−1 : Q 7→ U is a surjection and is defined
in the following way. Let v = (v0, v1, . . . , vn) be an arbitrary state. We construct the set
ζ(v) = {i ∈ N : vi = 1 ∨ vi = 2 ∨ (∀j ∈ N |(j, i) ∈ A : vj = 2)} and we let σ−1(v) contain
only the maximal elements in the partially ordered set (ζ(v), A(ζ(v))), i.e. the activities
without successors, where A(ζ(v)) is the subset of activity pairs in A with both elements in
ζ(v). The function σ : U 7→ 2Q is such that {σ(U1), . . . , σ(U|U|)} is a partition of Q. The
correctness of this approach derives from the following lemma:

Lemma 1. For any feasible state v, the set σ−1(v) is an element of U .

Proof: The set of activities J1 = {i ∈ N : vi = 1} needs to be an antichain of A for v to be
feasible.

The extension of set J1 with J2 = {i ∈ N : vi = 0 ∧ (∀j ∈ N |(j, i) ∈ A : vj = 2)} is still
an antichain: each of the additional activities can be started immediately.

The extension of set J1 ∪ J2 with J3 = {i ∈ N : vi = 2} is no longer an antichain, but
restriction to only the maximal elements of ζ(v) = J1 ∪ J2 ∪ J3 does preserve that property:
any additional activity has no successors in J1 ∪ J2 ∪ J3.

It still remains to show that the antichain σ−1(v) is inclusion-maximal. To see this,
suppose that an activity j ∈ N \σ−1(v) exists that can be added to σ−1(v) and the result is
still an antichain. Three cases can be distinguished: (1) vj = 0, in which case either j ∈ J2

or ∃k ∈ N : (k, j) ∈ A ∧ vk ∈ {0, 1}. If vk = 1 then k ∈ J1, otherwise vk = 0, and we can
repeat the same reasoning; since there is only a finite number of activities, we will end up
with a contradiction; (2) vj = 1, which is impossible since all k ∈ N with vk = 1 are in J1;
or (3) vj = 2 so j ∈ J3, and either j ∈ σ−1(v) or j is a predecessor of one or more activities
in J1 ∪ J2 ∪ J3. ¤

As an example, the vector v1 = (2, 2, 2, 2, 1, 1, 2, 1, 0, 0, 0, 0) is a feasible state for the illus-
tration project; σ−1(v1) is the UDC {4, 5, 6, 7}.

When an activity finishes, the current state is left and another state is entered. The
following observations will be useful in Section 3.3: call an activity i eligible if vi = 0 and
∀j ∈ N |(j, i) ∈ A : vj = 2.

5

Lemma 2. If at least one new activity becomes eligible then the system moves to a different
UDC, otherwise we remain in the same UDC.

Proof: This follows directly from the definition of σ−1(v): if no new activity becomes eligible
then the only activities with a changing state are activities i whose state vi goes from 1 to
2, leading to the same UDC. If a new activity becomes eligible then it was previously not
in the current UDC. ¤

Lemma 3. Inter-UDC-transitions can only lead from a lower- to a higher-ranked UDC.

Proof: If we move to a new UDC then at least one new activity is included in the UDC,
which is implicit from Lemma 2. Since this activity was not previously eligible, the finishing
activity that leads to the transition is a predecessor of the new activity, and so the UDC-rank
strictly increases. ¤

Lemma 3 implies that state transitions between different UDCs only take place from one
UDC to another UDC further right in Figure 2. Since there are links between certain, but
not all, pairs of UDCs, we shall refer to the corresponding system of UDCs with an indication
of the possible transitions as the UDC-network. The recognition of all inter-UDC-transitions
is embedded in our enumeration of the UDCs, and for each UDC Ui we record the number
lIi of incoming transitions.

In the example project, the UDC U9 = {1, 3, 10} is associated with 18 states, which are
listed in Table 1. Since the completion of activity 2 makes new activities eligible, only states
in which the status of activity 2 is in {0, 1} are included in σ(U9). There are two outgoing
transitions, both associated with the completion of activity 2: if activity 4 is idle or active
then the new UDC is {3, 5, 8, 10}, otherwise (in case activity 4 is completed) {5, 7, 8, 10} is
entered. The number lI9 of incoming transitions is 1, coming from {1, 3, 4, 6}.

The feasible states are indexed based on (1) the rank of the UDC they belong to; (2) the
number of the UDC at that rank; and (3) the ‘tertiary value’ for the state. For each UDC
U we identify the activities in U as ρi ∈ N , for i = 1, . . . , |U |; the activities are ordered in
increasing index (we omit the parameter U to operator ρ). For U9, we have ρ1 = 1, ρ2 = 3
and ρ3 = 10. The tertiary value τ(v) of a state v ∈ σ(U) is defined as follows:

τ(v) =

|U |∑
i=1

vρi
3i−1.

We use these tertiary values to order the states in each UDC; this enables the implementation
of a binary search procedure for efficient look-up of state information. The tertiary values
of the states in σ(U9) are given in Table 1.

3.3 Details on the dynamic program

In Section 3.2 we have discussed the construction of the UDC-network. This network serves
as the backbone of the state space of the CTMDC. In the second step of the algorithm (the
first step was the construction of the UDC-network), we apply a backward SDP-recursion to
determine optimal decisions. For ease of description, we resort to yet another characterization

6

completed in progress idle tertiary value
10,3 1 25
10,3 1 24
10 3,1 22
10 3 1 21
10 1 3 19
10 3,1 18
3 10,1 16
3 10 1 15
3 1 10 13
3 10,1 12

10,3,1 10
10,3 1 9
10,1 3 7
10 3,1 6
3,1 10 4
3 10,1 3
1 10,3 1

10,3,1 0

Table 1: A listing of all elements of σ(U9) = σ({1, 3, 10}).

of a state v ∈ Q: we let I(v), X(v) and L(v) represent the activities in N that are idle,
active and finished, respectively; these sets are given in the first three columns of Table 1
for all the states associated with the UDC {1, 3, 10} of the example project. There is a
one-to-one correspondence between (not necessarily feasible) state vectors v and mutually
exclusive sets I, X and L with I ∪X ∪L = N , and in our actual implementation we only use
the latter characterization of states, together with the tertiary values. The key instrument
of the SDP-recursion is the value function G(·), which determines the expected NPV of each
feasible state at the time of entry of the state, conditional on the hypothesis that optimal
decisions are made in all subsequent states. In the definition of the value function G(I, X),
we supply sets I and X of idle and active activities (which uniquely determines the finished
activities).

At the entry of a state v ∈ Q, a decision needs to be made whether to start a set of
eligible activities (and if so, which), or not to start any activities; the latter decision is
possible only if X(v) 6= ∅. If no activities are started, a transition towards another state
takes place after the first completion of an element of X(v). The probability that activity
i ∈ X(v) finishes first among the active activities equals µi/

∑
k∈X(v) µk. The expected time

to the first completion is
(∑

i∈X(v) µi

)−1

time units (the length of this timespan is also

exponentially distributed). The appropriate discount factor to be applied for this timespan

is
∑

k∈X(v) µk/
(
r +

∑
k∈X(v) µk

)
. The expected discounted NPV to be obtained from the

7

next state on condition that no new activities are started, therefore equals
∑

k∈X(v) µk

r +
∑

k∈X(v) µk

∑

i∈X(v)

µi∑
k∈X(v) µk

G(I(v), X(v) \ {i}). (1)

The second alternative is to start a non-empty set of eligible activities S ⊆ σ−1(v)∩I(v) when
state v ∈ Q is entered. This leads to incurring a cost

∑
i∈S ci and an immediate transition to

another state in the same UDC, with no discounting required. The corresponding immediate
NPV (in expectation), conditional on set S 6= ∅ being started, is

G(I(v) \ S, X(v) ∪ S) +
∑
i∈S

ci. (2)

The total number of decisions S that can be made is 2|σ
−1(v)∩I(v)| if we include S = ∅

according to Equation (1), otherwise it is one less. The decision corresponding with the
highest value in (1) and (2) determines G(I(v), X(v)), which completes our description of the
SDP-recursion. The optimal objective-function value is maxΠ E[g(s(D; Π),D)] = G(N,∅).
In order to quickly look up the necessary G()-values for the recursion, we use the tertiary
values. For a current state v and decision S ⊆ σ−1(v) ∩ I(v), the UDC and the tertiary
value of the destination state are easily determined. The value function for the appropriate
arguments is then retrieved via binary search.

The recursion starts in the final UDC in state (2, 2, . . . , 2, 0), so we omit states (2, 2, . . . , 1)
and (2, 2, . . . , 2). Stepwise, the value function is computed for states associated with lower-
ranked UDCs. As the algorithm progresses, the states in higher-ranked UDCs will no longer
be required for further computation and therefore the memory they occupy can be freed –
whence the usefulness of the decomposition of the project network into different UDCs. Our
overall search procedure is described as Algorithm 1. The trouble-free functioning of our
approach is confirmed by the following result, which, together with Lemma 3, guarantees
that we only look up G()-values for states that have already been created.

Lemma 4. For an arbitrary UDC U , in any state v ∈ σ(U), the backward SDP-recursion
only needs value-function look-ups within the same UDC for states u with τ(v) < τ(u).

Proof: Any activity’s status can only change from idle to active to completed as time
progresses, and when the status of the other activities remains unchanged, the status idle,
active and completed will always correspond with lowest, middle and highest tertiary value.¤

4 Performance

The algorithms currently available in the literature are able to solve project instances with
up to 25 activities, with performance depending on the density of the network. An actual
comparison is possible only with the algorithm of Tilson et al. [10]; Buss and Rosenblatt
[2] always start all eligible activities as soon as possible (but after a delay period, which is
individually chosen for each activity), and so contrary to our setting, Buss and Rosenblatt
make no further decisions once the project is in progress.

8

Algorithm 1 Global algorithmic structure

Generate the UDC-network
G({n},∅) = cn

for i = |U| − 1 downto 1 do
Allocate storage for all states in σ(Ui)
for all states v ∈ σ(Ui) in decreasing τ(v) do

Determine an optimal decision and the value function
end for
for all UDCs Uk 6= Ui reached by a look-up do

Decrement lIk
if lIk = 0 then

Free storage occupied by σ(Uk)
end if

end for
end for

Out of 30 randomly generated networks with 25 activities, Tilson et al. solve 29, 20
and 0 networks when the order strength OS amounts to 75%, 50% and 25%, respectively
(OS is the number of comparable activity pairs divided by the maximum possible number
of such pairs). The main bottleneck of their approach is the memory constraint. Using a
Pentium 4 with 2.8 GHz CPU-speed and 512 MB of RAM, Tilson et al. are restricted to
project instances featuring a maximum of 600,000 states, some of which may not be feasible.
In our model, storage requirement for 600,000 states amounts to a maximum of 4.58 MB
(including both the storage of tertiary values as well as NPV-values for each state), enabling
the solution of significantly larger instances; additionally, we only generate feasible states.
Our experiments are performed on an AMD Athlon with 1.8 GHz CPU-speed and 2,048
MB of RAM. Under this configuration, a state space of maximum 268,435,456 states can be
entirely stored in memory. Moreover, the decomposition of the project network into UDCs
yields additional significant reductions in storage requirements. During our experiments,
the instance with the largest size of Q to be successfully analyzed had 867,589,281 states
(resulting in an improvement of memory efficiency with factor 360 if correct allowance is
made for the difference in RAM).

The actual datasets examined by Tilson et al. are not available from the authors, so we
have decided to generate our own scheduling instances. We have used RanGen [3] to create
a dataset with 30 instances for each of the parameter settings OS = 0.4, 0.6 and 0.8, and
this for different values of n. The sign of the cash flows is unimportant to our algorithm;
in the generated instances all activities apart from the final one have negative cash flows
and the final activity has a positive cash flow (which is also significantly larger in absolute
value). We note that a significant speed-up can be obtained for the case of positive cash
flows for intermediate activities: it is always a dominant decision to start these as soon
as they become eligible (consequently, instances with only negative intermediate cash flows
constitute the most difficult ones).

Our results are presented in Table 2, gathered per combination of values for OS and n.
The table shows that networks of up to 40 activities are analyzed with relative ease. When

9

n = 50, however, the optimal solution of most networks with low order strength (OS = 0.4)
is beyond reach when the system memory is restricted to 2,048 MB. When OS = 0.6, the
performance is limited to networks with n = 80 or less. We observe that the density of the
network is a major determinant for both the computation times as well as the benefits of
the UDC-decomposition: order strengths and computation times clearly display an inverse
relation. With respect to computational performance, Tilson et al. report only their highest
computation time, which amounts to 210 seconds. For problems of comparable difficulty (i.e.
with Q containing approximately 600,000 states) our algorithm takes 14 seconds to determine
an optimal policy. Not taking into account the difference in computer configuration (the CPU
used by Tilson et al. is actually significantly more powerful than ours), this corresponds with
an improvement by factor of 15.

References

[1] V.G. Adlakha and V.G. Kulkarni. A classified bibliography of research on stochastic
PERT networks: 1966-1987. INFOR, 27:272–296, 1989.

[2] A.H. Buss and M.J. Rosenblatt. Activity delay in stochastic project networks. Opera-
tions Research, 45:126–139, 1997.

[3] E. Demeulemeester, M. Vanhoucke, and W. Herroelen. A random network generator
for activity-on-the-node networks. Journal of Scheduling, 6:13–34, 2003.

[4] S.E. Elmaghraby. Activity Networks: Project Planning and Control by Network Models.
Wiley, 1977.

[5] G. Igelmund and F.J. Radermacher. Preselective strategies for the optimization of
stochastic project networks under resource constraints. Networks, 13:1–28, 1983.

[6] V.G. Kulkarni and V.G. Adlakha. Markov and Markov-regenerative PERT networks.
Operations Research, 34:769–781, 1986.

[7] A. Ludwig, R.H. Möhring, and F. Stork. A computational study on bounding the
makespan distribution in stochastic project networks. Annals of Operations Research,
102:49–64, 2001.

[8] D.R. Shier and D.E. Whited. Iterative algorithms for generating minimal cutsets in
directed graphs. Networks, 16:133–147, 1986.

[9] F. Stork and M. Uetz. On the generation of circuits and minimal forbidden sets. Math-
ematical Programming, 102:185–203, 2005.

[10] V. Tilson, M.J. Sobel, and J.G. Szmerekovsky. Scheduling projects with stochastic
activity duration to maximize EPV. SSRN eLibrary, 2006. Working Paper Series;
available at http://ssrn.com/paper=1015785.

10

n number successfully analyzed (/30) |Q|
OS = 0.8 OS = 0.6 OS = 0.4 OS = 0.8 OS = 0.6 OS = 0.4

10 30 30 30 71 206 695
20 30 30 30 484 4, 006 55, 016
30 30 30 30 1, 995 49, 388 1, 560, 364
40 30 30 29 7, 860 534, 014 47, 072, 515
50 30 30 4 26, 667 4, 346, 215 526, 020, 237
60 30 30 0 92, 003 42, 278, 506
70 30 22 0 286, 831 216, 027, 815
80 30 9 0 829, 741 743, 325, 011
90 30 0 0 2, 596, 419
100 30 0 0 6, 868, 100
110 30 0 0 24, 235, 588
120 30 0 0 146, 639, 043

n average CPU-time average fraction states in memory
OS = 0.8 OS = 0.6 OS = 0.4 OS = 0.8 OS = 0.6 OS = 0.4

10 0.00 0.00 0.00 0.25 0.37 0.44
20 0.00 0.03 0.90 0.22 0.27 0.38
30 0.01 0.64 52.98 0.15 0.24 0.30
40 0.06 13.29 4, 273 0.15 0.28 0.29
50 0.27 171.56 99, 216 0.16 0.24 0.17
60 1.28 4, 048 0.16 0.33
70 5.37 33, 203 0.16 0.19
80 19.13 115, 377 0.13 0.11
90 86.86 0.16
100 301.03 0.17
110 1, 774 0.19
120 19, 215 0.16

Table 2: Computational results. We report the number of successfully analyzed networks
out of 30, the average size of the state space (“|Q|”), the average CPU-time required to
find an optimal policy and the average fraction of the states simultaneously in memory.
The last three values are averaged only for the instances that were successfully analyzed.

11

