

A Markov model for
measuring service levels in
nonstationary
G(t)/G(t)/s(t)+G(t)
queues
Stefan Creemers, Mieke Defraeye, Inneke Van
Nieuwenhuyse

KBI_1306

A Markov model for measuring service levels in nonstationary
G(t)/G(t)/s(t) + G(t) queues

Stefan Creemersa,∗, Mieke Defraeyeb, Inneke Van Nieuwenhuyseb

aIESEG School of Management (LEM-CNRS), Rue de la Digue 3, 59000 Lille, France
bResearch Center for Operations Management, Department of Decision Sciences and Information Management, KU

Leuven, Naamsestraat 69, 3000 Leuven, Belgium

Abstract

We present a Markov model to approximate the queueing behavior at the G(t)/G(t)/s(t)+G(t)
queue with exhaustive discipline and abandonments. The performance measures of interest are:
(1) the average number of customers in queue, (2) the variance of the number of customers in
queue, (3) the average number of abandonments and (4) the virtual waiting time distribution of a
customer when arriving at an arbitrary moment in time. We use acyclic phase-type distributions
to approximate the general interarrival, service and abandonment time distributions. An efficient,
iterative algorithm allows the accurate analysis of small- to medium-sized problem instances.
The validity and accuracy of the model are assessed using a simulation study.

Keywords: Nonstationary arrivals, Time-varying demand, Markov model, G(t)/G(t)/s(t) + G(t)
queue, Performance measurement

1. Introduction

Many service systems exhibit a cyclic demand for service. E.g., in call centers, emergency
departments, banks and retail stores, the number of arrivals typically displays a daily, weekly or
monthly recurring pattern. Figure 2, for instance, displays the daily fluctuations in arrival rate
at the emergency department of a regional hospital in Belgium; other examples can be found
in [1], [2] and [3], among others. Apart from the time-varying nature of demand, additional
complexities may arise because of (1) the presence of customer impatience, which causes cus-
tomers to abandon before receiving service if their waiting time is too long and (2) the general
distribution of service and abandonment times. The Poisson assumption that is common in the
literature tends to be invalid in realistic settings; for instance, Brown et al. [2] report a lognormal
distribution and Castillo et al. [4] report Erlang distributed service times in a call-center context.
Moreover, many existing models in the literature implicitly assume a preemptive service disci-
pline, such that service is interrupted and customers rejoin the queue when a server is scheduled
to leave. An exhaustive service policy, where a customer’s service is completed even if this re-
quires the server to work past his scheduled time, is often more appropriate (especially in service

∗Corresponding author.
Email addresses: s.creemers@ieseg.fr (Stefan Creemers), mieke.defraeye@kuleuven.be (Mieke

Defraeye), inneke.vannieuwenhuyse@kuleuven.be (Inneke Van Nieuwenhuyse)

H
o

u
rl
y
 a

rr
iv

a
l
ra

te

Hour of the day

0 2 4 6 8 10 12 14 16 18 20 22 24

1

2

3

4

Figure 1: Hourly average arrival rates at the emergency department of a Belgian regional hospital

systems with human customers and servers). This feature, however, is frequently overlooked in
the literature [5, 6].

Performance analysis for systems with time-varying arrivals is highly important when mak-
ing capacity decisions. Capacity planning models rely on a performance evaluation method as
a subroutine to assess the solution quality of any given capacity vector. We refer to Green et al.
[7], Whitt [8], Defraeye and Van Nieuwenhuyse [9] for extensive reviews on capacity planning
in time-varying systems.

This article presents a Markov model that approximates the transient and steady-state behav-
ior of the G(t)/G(t)/s(t) +G(t) queue with exhaustive discipline and time-varying arrival, service
and abandonment rates. The model enables the evaluation of the following (time-varying) per-
formance metrics: (1) the expected queue length, (2) the variance of the queue length, (3) the
expected number of abandonments and (4) the virtual waiting time distribution of a customer
when arriving at an arbitrary moment in time. The suggested approach extends the randomiza-
tion method of Ingolfsson et al. [5] and Ingolfsson [10], which targets M(t)/M/s(t) queues with
an exhaustive service policy (an outline on how to include customer impatience is provided, yet
not implemented). To the best of our knowledge, this is the first analytical model that stud-
ies a queue with an exhaustive service policy, customer impatience and generally distributed
(time-varying) arrival, service and abandonment rates. The approach is intended for small- to
medium-sized systems that have human servers (e.g., banks, retail stores or small-scale call cen-
ters). For larger problem instances, the computational cost increases substantially. The model is
validated and evaluated by means of a simulation study.

The remainder of the article is organized as follows: Section 2 starts with a brief overview of
the literature on performance measurement in systems with time-varying arrivals. In Section 3,
we present an in-depth description of the Markov model itself. Section 4 evaluates the accuracy
and validity of the model by means of a computational experiment. In a final section (Section 5),
we highlight the main conclusions and suggest directions for further research.

2. Related literature

Previous work has mainly focused on systems with time-varying arrival rates. In this section,
we provide a brief overview of the (most frequently) used methods for performance analysis in
such systems.

Stationary approximations are by far the most widely adopted approach. The arrival rate
that is fed into the stationary model can be, for instance, the instantaneous arrival rate (as in the

2

Pointwise Stationary Approximation or PSA [11, 12, 13]) or the average arrival rate over a given
interval (Stationary Independent Period-by-Period or SIPP [14, 13]). However, time-varying sys-
tems typically display a time lag (or congestion lag): peaks in actual offered load lag the arrival
rate peaks, with an amount that is proportional to the expected service time [15, 16]. Accounting
for this lag can greatly improve the accuracy of SIPP and PSA, particularly when service times
are long (see the lagged variants of SIPP and PSA [17, 15, 14]). The Modified Offered Load
(MOL) approximation accounts for the congestion lag by relying on analytically tractable results
for infinite server queues, which can be found in Eick et al. [18, 19]. Further details on MOL can
be found in Feldman et al. [20], Jennings et al. [21], Liu and Whitt [22], Jagerman [23], Massey
and Whitt [24, 25] and Davis et al. [26]. Though stationary approximations are straightforward
and generally applicable, additional challenges may arise in complex systems, for which the sta-
tionary model itself is intractable. For instance, the applicability of MOL to the M(t)/G/s(t) + G
model necessarily relies on the availability and accuracy of approximations for the correspond-
ing stationary M/G/s + G model (see Whitt [27] and Iravani and Balciog̃lu [28]). We refer to
Green et al. [7], Whitt [8] and Defraeye and Van Nieuwenhuyse [9] for further references on the
stationary approximations available in the literature.

For the M(t)/M/s(t) system, performance can be evaluated by numerically integrating the
Chapman-Kolmogorov forward equations, a set of ordinary differential equations (ODEs) that
describe the behavior of the system (see Gross et al. [29] for general background; Ingolfsson et
al. [5] and Green and Soares [31] provide a more thorough discussion). This can be achieved
using an ODE-solver such as the Euler or Runge-Kutta ODE solver from the Matlab ODE Suite
[32]. Ingolfsson et al. [5] show that this approach requires substantial computational effort and
suggest using the randomization approach instead: this enables a drastic reduction in compu-
tational effort, at the cost of a slightly lower accuracy. The randomization (or uniformization)
approach was originally developed for stationary systems [33, 34, 35], but can be applied suc-
cessfully to nonstationary queues [10, 5]. In general, the numerical integration of ODEs as well
as randomization require the use of exponential distributions in order to obtain accurate results.
Furthermore, these approaches currently do not take into account abandonments (though In-
golfsson [10] provides an outline on how to accommodate abandonments in the randomization
approach).

Closure approximations [36, 37, 38] approximate the set of forward differential equations by
just two differential equations (one for the mean and one for the variance of the number in system
at each time instant). However, as shown in Ingolfsson et al. [5], the approach is cumbersome to
implement and is dominated by other methods (such as MOL or randomization) in terms of both
accuracy and computation speed.

Discrete-time modeling (DTM) is used for performance evaluation of systems with general
service time distributions [39, 40, 41, 42, 43]. This approach approximates the general service
process by means of a discrete process using a two-moment matching technique [40, 41]. Wall
and Worthington [43] report distinct advantages over stationary approximations such as MOL
and PSA, particularly when temporal overloading is present. The complexity and computational
effort of DTM, however, increase drastically with the number of servers; Wall and Worthing-
ton [43] propose an approximation method to mitigate this effect. Note that the current DTM
articles all study the M(t)/G/s system (i.e., they assume a constant number of servers and no
abandonments).

Deterministic fluid models (intended for systems that do not display stochasticity) can be
used as approximations to derive time-dependent performance in stochastic systems. These
methods rely on so-called “fluid scaling”: the system is scaled up (e.g., by multiplying the ar-

3

rival rates and the number of servers by the same factor) such that the stochastic randomness
decreases in importance, relative to the system dynamics (see Helber and Henken [44] for an
example). Fluid approximations are particularly useful to assess performance in systems that are
temporarily overloaded [45], but may fail to capture system dynamics accurately in underloaded
systems [46, 47, 48]. Liu and Whitt [49] suggest an approach that works for overloaded as well
as underloaded systems (separate models are applied in both situations). Additional literature
on the use of fluid approximations for Markovian models, can be found in Mandelbaum et al.
[50, 54, 51, 52, 53], Ridley et al. [55] and Jiménez and Koole [48]. For systems with general
service and/or abandonment time distributions, we refer to the more recent work of Whitt [45]
on G(t)/GI/s + GI models (with state-dependent arrival rates), Liu and Whitt [49, 56, 57, 58]
on the G(t)/GI/s(t) + GI queue, Liu and Whitt [59] for a network of G(t)/M(t)/s(t) + GI(t)
queues and references therein. A key characteristic of fluid models is that arrivals and departures
are considered as continuous flows, rather than discrete processes (an assumption that becomes
more acceptable as the number of servers increases). Although Liu and Whitt [49] report reason-
ably accurate results for a system with 20 servers, the assumption of fluid scaling renders these
approximations less applicable to small-scale settings where the discreteness of capacity is an
essential characteristic of the system.

Finally, discrete-event simulation is frequently used (a comprehensive textbook can be found
in [60]). The appeal of simulation lies in its inherent flexibility to evaluate the performance
of virtually any given system. As such, simulation proves particularly useful in settings that
are analytically intractable. On the downside, simulation tends to be rather time-consuming,
both in terms of runtime and time required to build the model. Although simulation models
are commonly dedicated and context-specific (e.g., [61, 62, 63, 64, 65, 66] describe simulation
applications in EDs with time-varying arrivals) efforts are made to develop generic simulation
models (e.g., [67, 68, 69, 70, 71]). In this article, we use discrete-event simulation to validate the
Markov model.

3. Model

In this section we develop an approximation for the G(t)/G(t)/s(t) + G(t) queue with ex-
haustive discipline and abandonments. Analogous to the DTM models discussed in the previous
section, our model observes the state of the system at discrete moments in time. Unlike the
DTM models, however, we do not rely on discrete distributions, but use continuous-time phase-
type (PH) distributions to match the continuous system processes. Because each phase of a
continuous-time PH distribution has an exponentially distributed visiting time, the system pro-
cesses are approximated by mixtures of exponential distributions. A notable downside of DTM
is that it requires to keep track of each server individually. In our approach, however, this is not
the case. Due to the memoryless property of the exponential distribution, it suffices to keep track
of the number of servers associated with a given phase of the service process.

In what follows, we first define the basic processes that govern the system (Section 3.1) and
introduce the phase-type distributions that are used to model these basic processes (Section 3.2).
Next, we define a counting process (Section 3.3) and a procedure to determine the probability that
a given number of customers advances a phase (Section 3.4). In the last subsections, we present
the model itself (Sections 3.5 and 3.7) and discuss the performance measures (Section 3.6).

4

∆

1
(1)

2
(1)

3
(2)

t -1
(D-1)

t
(D-1)

t+1
(D)

4
(3)

D2 3

T
(D)

1
START OF

EPOCH

PERIOD
(EPOCH)

Figure 2: Division of time

3.1. Basic Processes
We observe the state of the system at discrete, equidistant moments in time. The time between

observation moments determines the granularity (and hence the precision) of the model and is
denoted by ∆. Define T = {1, . . . ,T }, the set of periods (where T is the last period; the period
that marks the end of the time horizon). There are four basic processes: (1) the arrival process,
(2) the service process, (3) the abandonment process and (4) the staffing process. At the start of
any given period, these processes are allowed to change. If such a change takes place for at least
one of the processes, the start of the period corresponds with the start of a so-called “epoch”. Let
D(·) =

{
1, 2, . . . ,D(·)

}
denote the set of epochs for a process (·), where D(·) is the total number of

epochs over the time horizon. For each process (·), define td, the period at which epoch d starts,
where t1 = 0 and ti < t j ≤ tD(·) ≤ T for all i, j : i < j ≤ D(·). Function φ(·)

t = i maps a period t
onto an epoch i, where i is the ongoing epoch at the start of period t (i.e., there exists no epoch j
for which ti < t j ≤ t). Figure 2 further illustrates the division of time.

Each epoch of the arrival, service and abandonment process is characterized by a distribution
G(·)

d that has mean µ(·)
d and standard deviation σ(·)

d . As such:

• µ(I)
d and σ(I)

d represent the mean and standard deviation of the interarrival times during an
epoch d : d ∈ D(I),

• µ(II)
d and σ(II)

d represent the mean and standard deviation of the service times during an
epoch d : d ∈ D(II),

• µ(III)
d and σ(III)

d represent the mean and standard deviation of the abandonment times during
an epoch d : d ∈ D(III).

Each epoch of the staffing process represents a so-called staffing interval (during which staffing
remains unchanged) and is associated with a number of servers sd : d ∈ D(IV). In the remainder
of this article, Roman numerals I, II, III and IV are used to label the arrival, service, abandonment
and staffing process respectively. Figure 3 summarizes the single-stage multiserver service sys-
tem with time-varying interarrival times, service times, abandonment times and staffing levels.

3.2. Phase-type distributions
We adopt continuous-time PH distributions to approximate the general interarrival, service

and abandonment time distributions. Continuous-time PH distributions use exponentially-distributed
building blocks to approximate any positive-valued continuous distribution with arbitrary preci-
sion (see Neuts [72], Latouche [73] and Osogami [74] for further details on PH type distribu-
tions). More formally, a PH distribution is the distribution of time until absorption in a Markov
chain with absorbing state 0 and state space {0, 1, . . . ,Z − 1,Z}. It is fully characterized by pa-
rameters τ and Z. τ is the vector of probabilities to start the process in any of the Z transient

5

∼Gd (µ ,σ)
(III)

d

(III) (III)

d

∼Gd (µ ,σ)
(I)

d

(I) (I)

d
∼Gd (µ ,σ)

(II)

d

(II) (II)

d

Epoch d D
(IV)

ARRIVAL
SERVICE

PROCESS

SERVICE

COMPLETION

ABANDONMENT

QUEUE

PROCESS I PROCESS II

PROCESS III

sd

PROCESS IV

Figure 3: The G (t) /G (t) /s (t) + G (t) queueing system

states (i.e., phases) and Z is the transient state transition matrix. The infinitesimal generator of
the Markov chain representing the PH distribution is:

Q =

(
0 0
t Z

)
,

where 0 is a zero matrix of appropriate dimension and t = −Ze (with e a vector of ones of
appropriate size).

Various techniques exist to approximate a given distribution by means of a PH distribution.
In this article, we adopt a two-moment matching procedure that minimizes the required number
of phases. Let C2 denote the squared coefficient of variation of the distribution we want to
approximate:

C2 = σ2µ−2. (1)

We distinguish three cases: (1) C2 = 1, (2) C2 > 1 and (3) C2 < 1. In the first case, we
approximate the distribution by means of an exponential distribution with rate parameter λ = µ−1.
The parameters of the corresponding PH distribution are:

τ = 1,
Z = (−λ) .

In the second case, we use a two-phase Coxian distribution where the rate parameter of the first
phase is determined by means of a scaling factor κ:

λ1 =
1
µκ
. (2)

The expected value of the two-phase Coxian distribution is:

µ = λ−1
1 + βλ−1

2 , (3)

where λ2 is the exponential rate parameter of the second phase and β is the probability of visiting
the second phase. The variance of the two-phase Coxian distribution is:

σ2 = λ−2
1 + 2βλ−2

2 − β
2λ−2

2 . (4)

6

When deriving parameters λ2 and β as a function of parameters µ, C2 and κ, we obtain:

λ2 =
2 (κ − 1)

µ
(
2κ − 1 −C2) , (5)

β =
2 (κ − 1)2

1 + C2 − 2κ
. (6)

The parameters of the corresponding PH distribution are:

τ = e1,

Z =

(
−λ1 βλ1

0 −λ2

)
,

where e1 is a single-entry vector of appropriate size that is populated with zeroes except for the
first entry, which equals one. In the third case, we use a hypo-exponential distribution (a series of
exponential distributions whose parameters are allowed to differ; a generalization of the Erlang
distribution). The number of required phases equals:

Z = dC−2e. (7)

We assume that the first Z − 1 phases of the hypo-exponential distribution are exponentially
distributed with rate parameter λ1. The last phase is exponentially distributed with rate parameter
λ2. The expected value and variance of the hypo-exponential distribution are:

µ = (Z − 1) λ−1
1 + λ−1

2 , (8)
σ2 = (Z − 1) λ−2

1 + λ−2
2 . (9)

When deriving parameters λ1 and λ2 as a function of parameters µ, C2 and Z, we obtain:

λ1 =
(Z − 1) −

√
(Z − 1)

(
ZC2 − 1

)
µ
(
1 −C2) , (10)

λ2 =
1 +

√
(Z − 1)

(
ZC2 − 1

)
µ
(
1 − ZC2 + C2) . (11)

The parameters of the corresponding PH distribution are:

τ = e1,

Z =

−λ1 λ1 0 · · · 0 0 0
0 −λ1 λ1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −λ1 λ1 0
0 0 0 · · · 0 −λ1 λ1
0 0 0 · · · 0 0 −λ2

.

For the three cases, Z equals 1, 2 and dC−2e respectively. Figure 4 provides an overview of the
PH distributions that are used in this article.

7

Exponential distribution

Hypo-exponential distribution

Two-phase Coxian distribution

1
(λ)

STATE
(RATE OUT)

0

2
(λ2)

0
1

(λ1)

β

1-β

2
(λ1)

1
(λ1)

Z
(λ2)

0
Z-1
(λ1)

TRANSITION
PROBABILITY

Figure 4: Overview of PH distributions

3.3. Counting process
We use a counting process to obtain Pr (x, v|u, d), the probability of having x arrivals during

an interval t (of length ∆) for which φ(I)
t = d, and an arrival process at final phase v given that the

arrival process starts in phase u and is modeled using a PH distribution with parameters τ(I)
d and

Z(I)
d .

The counting process has continuous-time rate matrix [75]:

Qd =

Ld Fd 0 0 · · ·

0 Ld Fd 0 · · ·

0 0 Ld Fd · · ·

0 0 0 Ld · · ·

· · · · · · · · · · · ·
. . .

,

where Ld = Z(I)
d and Fd = t(I)

d

(
τ(I)

d

)>
. Cd holds the transition probabilities of the counting process

during an interval of length ∆ during epoch d:

Cd = e∆Qd , (12)

=

∞∑
i=0

∆i

i!
Qi

d, (13)

= e−∆λd,max

∞∑
i=0

(∆λd,max)i

i!
Pi

d, (14)

8

where λd,max = −min
(
Diag (Z)

)
and Pd is obtained as follows:

Pd =
Qd

λd,max
+ I, (15)

where I is an identity matrix of appropriate dimension.
The first block row of Cd holds the distribution of the number of arrivals (i.e., probabilities

Pr (x, v|u, d)). In order to obtain the first block row of Cd, it suffices to compute the first block
row of Pi

d for all i ≥ 0; this can be done by means of a simple recursion.

3.4. Procedure to determine the probability of advancing a phase

The following procedure is used to determine the probability to advance a phase in the service
or abandonment process. Let Pr (y|x, u, d)(·) denote the probability that y customers successfully
complete phase u of process (·) during an interval of length ∆, given that x customers are present
in phase u at the start of the interval and the process is modeled using a PH distribution with
parameters τ(·)

d and Z(·)
d .

In order to compute Pr (y|x, u, d)(·), we use a Markov process that has infinitesimal generator:

Q(·)
d,u =

−yλ(·)
d,u yλ(·)

d,u · · · 0 0 0
−(y − 1)λ(·)

d,u (y − 1)λ(·)
d,u · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · −2λ(·)
d,u 2λ(·)

d,u 0
0 0 · · · 0 −λ(·)

d,u λ(·)
d,u

0 0 · · · 0 0 0

,

where λ(·)
d,u is the exponential rate that corresponds to the u-th phase of a PH distribution with

parameters τ(·)
d and Z(·)

d . C(·)
d,u holds the transition probabilities after an interval of length ∆ during

epoch d:

C(·)
d,u = e∆Q(·)

d,u (16)

=

∞∑
i=0

∆i

i!

(
Q(·)

d,u

)i
(17)

= e−∆λ(·)
d,u,max

∞∑
i=0

(∆λ(·)
d,u,max)i

i!

(
P(·)

d,u

)i
, (18)

where λ(·)
d,u,max = yλ(·)

d,u and where P(·)
d,u is obtained as follows:

P(·)
d,u =

Q(·)
d,u

λ(·)
d,u,max

+ I. (19)

The first row of C(·)
d,u holds the distribution of the number of successes (i.e., probabilities

Pr (y|x, u, d)(·)). The first block row of C(·)
d,u can be obtained by computing the first row of

(
P(·)

d,u

)i

for all i ≥ 0; this can be done by means of a simple recursion.
9

3.5. Model building blocks
Let (a, s,b)t denote the state of the system at the start of interval t (of length ∆), where: (1)

a is the phase of the arrival process, (2) s is a vector that holds the number of customers in each
service phase and (3) b is a vector that holds the number of customers in each abandonment
phase. S and B are the sets of all possible vectors s and b respectively. In addition, define
π (a, s,b)t, the probability to visit state (a, s,b)t. The maximum dimension of the state space at the
start of any period depends on (1) Z(I)

max is the maximum number of phases of the arrival process,
(2) Z(II)

max is the maximum number of phases of the service process, (3) smax is the maximum
number of servers, (4) Z(III)

max is the maximum number of phases of the abandonment process and
(5) Qmax is the maximum number of customers allowed in queue.

In order to determine the state of the system at the start of a period t, we propose a stepwise
procedure. The following steps are executed in sequence:

1. Initialization.
2. Implement process changes (arrival, service, abandonment and staffing process).
3. Arrival of customers.
4. Service of customers.
5. Abandonment of customers.

In what follows, we discuss each of these steps.

3.5.1. Initialization
When making a transition from a state (a, s,b)t towards a state (a, s,b)t+1, several state space

manipulations take place (e.g., process changes, arrival, service and abandonment of customers).
In order to process these state space manipulations, we use a temporary probability vector
π (δ, a, s,b) (where δ is a binary variable). π (δ, a, s,b) represents the state of the system after
manipulation, whereas π (1 − δ, a, s,b) represents the state of the system before manipulation
takes place. Our method requires the state of the system to be stored only before and after each
manipulation, which enables to save memory. This is of critical importance, as is is infeasible to
store the state space over the entire time horizon (even for small instances).

During the initialization step, we initialize this temporary probability vector. An outline of
the initialization step is provided in Algorithm 1.

Algorithm 1 Initialization step at start of period t
Initialize binary variable: δ = 0
for a = 1 to Z(I)

φt
do

for all (s ∈ S) ∧ (b ∈ B) do
Initialize temporary probability vector: π (δ, a, s,b) = 0
Initialize temporary probability vector: π (1 − δ, a, s,b) = π (a, s,b)t

end for
end for

3.5.2. Implementation of process changes
There are four basic processes and therefore four events can take place when implementing

the process changes. First, a new arrival epoch may start at the start of period t. In this case, the
arrival phase is reset. Departing from state (1 − δ, a, s,b), the following transition takes place:

(1 − δ, a, s,b)→ (δ, 1, s,b) .
10

If a new service epoch starts at the start of period t, the service process of all customers in service
is reset. Departing from state (1 − δ, a, s,b), the following transition takes place:

(1 − δ, a, s,b)→ (δ, a, nse1,b) ,

where ns is the sum of all entries in vector s:

ns = tr (sI) , (20)

where tr is the matrix trace operator. If a new abandonment epoch starts at the start of a period
t, the abandonment process of all waiting customers is reset. Departing from state (1 − δ, a, s,b),
the following transition takes place:

(1 − δ, a, s,b)→ (δ, a, s, nbe1) ,

with nb the sum of all entries in vector b:

nb = tr (bI) . (21)

Algorithm 2 summarizes how changes in the arrival, service and abandonment process are im-
plemented.

If the staffing process changes, two options arise: (1) new servers become available or (2) the
number of servers decreases. If new servers become available, waiting customers are selected
according to a first-come first-serve (FCFS) policy. We first select customers in the last phase
of the abandonment process because it is likely that they have waited the longest (note that this
is not necessarily the case). For each server that becomes available, the following state space
manipulation is performed:

(1 − δ, a, s,b)→
{

(δ, a, s + e1,b − eu) if nb > 0,
(δ, a, s,b) otherwise,

where: (1) eu is a single-entry vector populated with zeroes, except for the entry at position u, (2)
u : max

u
(bu > 0) and (3) bu is the u-th entry of vector b. Algorithm 3 summarizes the activation

of a single server. In case of a decrease in capacity, we need to account for the exhaustive service
policy: some servers may complete a customer’s service, even if they are scheduled to leave.
We adopt an approach that is similar to the technique used by Ingolfsson [10]: since servers that
work overtime no longer influence the performance of future customers, these are removed from
the system (along with the customers they serve). Although in reality, these customers are still
in the system, this modification is necessary to correctly calculate other performance measures
(such as the distribution of the virtual waiting time, see Section 3.6). A decrease of x servers is
accommodated by first removing all idle servers. If insufficient idle servers are available, c(x,s,t)
active servers are removed:

c(x,s,t) = max (0, x − st + ns) , (22)

where st − ns represents the number of idle servers. Given a distribution of customers s over the
different phases of the service process, the probability to remove a server that is processing a
customer who is in phase u of his service process equals:

Pr (u|s) =
su

ns
, (23)

11

Algorithm 2 Implementation of arrival, service and abandonment process changes at start of
period t

if the arrival process changes at the start of period t then
for a = 1 to Z(I)

φt
do

for all (s ∈ S) ∧ (b ∈ B) do
Implement change: π (δ, 1, s,b) += π (1 − δ, a, s,b)
Initialize temporary probability vector: π (1 − δ, a, s,b) = 0

end for
end for
Update binary variable: δ = 1 − δ

end if
if the service process changes at the start of period t then

for a = 1 to Z(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do

Implement change: π (δ, a, nse1,b) += π (1 − δ, a, s,b)
Initialize temporary probability vector: π (1 − δ, a, s,b) = 0

end for
end for
Update binary variable: δ = 1 − δ

end if
if the abandonment process changes at the start of period t then

for a = 1 to Z(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do

Implement change: π (δ, a, s, nbe1) += π (1 − δ, a, s,b)
Initialize temporary probability vector: π (1 − δ, a, s,b) = 0

end for
end for
Update binary variable: δ = 1 − δ

end if

12

where su is the u-th entry of vector s. For each active server that is removed, the following state
space manipulation is performed (the transition probability is indicated above the arrow):

(1 − δ, a, s,b)
Pr(u|s)
−−−−→ (δ, a, s − eu,b) ,

Algorithm 4 summarizes how changes in the staffing process are implemented.

Algorithm 3 Activation of a single server

for a = 1 to Z(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do

for u = Z(III)
φt

to 1 do
if bu > 0 then

Implement change: π (δ, a, s + e1,b − eu) += π (1 − δ, a, s,b)
Customer has entered service, exit loop: u = 1

end if
Initialize temporary probability vector: π (1 − δ, a, s,b) = 0

end for
end for

end for
Update binary variable: δ = 1 − δ

3.5.3. Arrival, service and abandonment of customers
From the counting process discussed in Section 3.3, we obtain probabilities Pr (x, v|u, d).

Using these probabilities, we can determine the state of the system after arrivals have taken place.
Because the size of the queue is limited to Qmax customers, we impose a reflecting boundary (i.e.,
whenever x customers arrive, with x ≥ Qmax − nb, the resulting queue length equals Qmax). More
formally:

(1 − δ, u, s,b)
Pr

(
x,v|u,φ(I)

t

)
−−−−−−−−→

{
(δ, v, s,b + xe1) if Qmax ≥ nb + x,
(δ, v, s,b + (Qmax − nb) e1) otherwise.

Algorithm 5 provides an outline of the arrival step.
Customers in service are only allowed to advance a single phase during an interval of length

∆. The probability of advancing a phase is obtained from the procedure discussed in Section 3.4.
For each phase, a state space manipulation is performed and phases are processed in reverse
order. Customers who are in the last phase of their service process complete service (note that
Z(II)
φt

is the last phase of the service process):

(1 − δ, a, s,b)
Pr(x|ns,u,φt)(II)

−−−−−−−−−−→

{
(δ, a, s − xeu,b) if su > 0 ∧ u = Z(II)

φt
,

(δ, a, s,b) otherwise.

If the service process is not modeled using a two-phase Coxian distribution, customers who are
not in the last phase of their service process advance a phase:

(1 − δ, a, s,b)
Pr(x|ns,u,φt)(II)

−−−−−−−−−−→

{
(δ, a, s − xeu + xeu+1,b) if su > 0 ∧ 1 ≤ u < Z(II)

φt
,

(δ, a, s,b) otherwise.
13

Algorithm 4 Implement staffing process change at start of period t
if x servers become available at the start of period t then

for i = 1 to x do
Activate a single server: Algorithm 3

end for
else if x servers are removed at the start of period t then

while x > 0 do
for a = 1 to Z(I)

φt
do

for all (s ∈ S) ∧ (b ∈ B) do
if c(x,s,t) > 0 then

for u = 1 to Z(II)
φt

do
Implement change: π (δ, a, s − eu,b) += π (1 − δ, a, s,b) Pr (u|s)

end for
Initialize temporary probability vector: π (1 − δ, a, s,b) = 0

end if
end for

end for
Update binary variable: δ = 1 − δ
Decrement x: x = x − 1

end while
end if

Algorithm 5 Arrival of customers during interval t

for a = 1 to Z(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do

for all x = 0 to Qmax do
if Qmax ≥ nb + x then

Arrival of x customers:
π (δ, v, s,b + xe1) += π (1 − δ, a, s,b) Pr

(
x, v|a, φ(I)

t

)
else

Arrival of Qmax − nb customers:
π (δ, v, s,b + (Qmax − nb) e1) += π (1 − δ, a, s,b) Pr

(
x, v|a, φ(I)

t

)
end if

end for
Initialize temporary probability vector: π (1 − δ, a, s,b) = 0

end for
end for
Update binary variable: δ = 1 − δ

14

If the service process is modeled using a two-phase Coxian distribution, there is a probability
that customers in the first phase complete service instead of advancing a phase. The probability
of completing service equals 1− β(II)

φt
. The probability that y out of x customers complete service

is binomially distributed and equals:

Pr (y|x, φt)(II) =
x!

y! (x − y)!

(
1 − β(II)

φt

)y (
β(II)
φt

)x−y
. (24)

The state space transitions are summarized as follows:

(1 − δ, a, s,b)
Pr(x|ns,u,φt)(II)Pr(y|x,φt)(II)

−−−−−−−−−−−−−−−−−−→ (δ, a, s − xeu + (x − y) eu+1,b) .

Algorithm 6 provides an outline of the service step.

Algorithm 6 Service of customers during interval t

for u = Z(II)
φt

to 1 do
for a = 1 to Z(I)

φt
do

for all (s ∈ S) ∧ (b ∈ B) do
for all x = 0 to su do

if u = Z(II)
φt

then
x customers complete service:
π (δ, a, s − xeu,b) += π (1 − δ, a, s,b) Pr (x|su, u, φt)(II)

else
if Two-phase Coxian distribution is used then

for all y = 0 to x do
y customers complete service, x − y customers advance:
π (δ, a, s − xeu + (x − y) eu+1,b) +=

π (1 − δ, a, s,b) Pr (x|su, u, φt)(II) Pr (y|x, φt)(II)

end for
else

x customers advance a phase:
π (δ, a, s − xeu + xeu+1,b) += π (1 − δ, a, s,b) Pr (x|su, u, φt)(II)

end if
end if

end for
Initialize temporary probability vector: π (1 − δ, a, s, a) = 0

end for
end for
Update binary variable: δ = 1 − δ

end for
while Servers are idle do

Activate a single server: algorithm 3
end while

With respect to the abandonment process, we adopt a logic that is similar to the one of the
service process. Algorithm 7 provides an outline of the abandonment step.

After the abandonment step, probabilities π (a, s,b)t+1 are readily available:

π (a, s,b)t+1 = π (1 − δ, a, s,b) . (25)
15

Algorithm 7 Abandonment of customers during interval t

for u = Z(III)
φt

to 1 do
for a = 1 to Z(I)

φt
do

for all (s ∈ S) ∧ (b ∈ B) do
for all x = 0 to bu do

if u = Z(III)
φt

then
x customers abandon:
π (δ, a, s,b − xeu) += π (1 − δ, a, s,b) Pr (x|bu, u, φt)(III)

else
if Two-phase Coxian distribution is used then

for all y = 0 to x do
y customers abandon, x − y customers advance:
π (δ, a, s,b − xeu + (x − y) eu+1) +=

π (1 − δ, a, s,b) Pr (x|bu, u, φt)(III) Pr (y|x, φt)(III)

end for
else

x customers advance a phase:
π (δ, a, s,b − xeu + xeu+1) += π (1 − δ, a, s,b) Pr (x|bu, u, φt)(III)

end if
end if

end for
Initialize temporary probability vector: π (1 − δ, a, s, a) = 0

end for
end for
Update binary variable: δ = 1 − δ

end for

16

3.6. Performance measures

Let W ⊆ T denote the set of performance intervals and define ϕ(·)
w = i, the function that

maps a performance interval w onto an epoch i, where i is the ongoing epoch of process (·) at the
start of performance interval w. The performance measures of interest are: (1) the expected queue
length, (2) the expected queue length at the start of performance interval w, (3) the variance of the
expected queue length, (4) the variance of the expected queue length at the start of performance
interval w, (5) the expected number of abandonments during performance interval w and (6) the
waiting time distribution of a virtual customer that arrives at the start of performance interval w.
The virtual waiting time at time t is defined as the time a virtual customer would have to spend
in queue if he were to arrive at time t (cf. Gross et al. [29] and Campello and Ingolfsson [30]).
The expected queue length is approximated by:

Q =

T∑
t=1

Z(I)
φt∑

a=1

∑
s∈S

∑
b∈B

π (a, s,b)t nb. (26)

The expected queue length at the start of performance interval w equals:

Qw =

Z(I)
ϕw∑

a=1

∑
s∈S

∑
b∈B

π (a, s,b)w nb. (27)

The variance of the queue length is approximated by:

V =

T∑
t=1

Z(I)
φt∑

a=1

∑
s∈S

∑
b∈B

π (a, s,b)t (nb − Qt)2 . (28)

The variance of the expected queue length at performance interval w equals:

Vw =

Z(I)
ϕw∑

a=1

∑
s∈S

∑
b∈B

π (a, s,b)w (nb − Qw)2 . (29)

LetAw denote the expected number of abandonments during performance interval w. Aw is
computed during the abandonment step; see Algorithm 8 for details (which is an adaptation of
Algorithm 7).

Define Pr (Ww = h), the probability that a virtual customer who arrives at the start of per-
formance interval w receives service during interval w + h (i.e., the virtual customer receives
service after waiting h intervals of length ∆). In order to obtain Pr (Ww = h), we use a death
process and stop the arrival process at the start of performance interval w. The first period during
which a server becomes idle, defines the waiting time of the virtual customer. More formally, the
virtual waiting time equals h∆ where h is the first integer for which Nw+h < sw+h and where Nt

denotes the number of customers in system at time t, if the arrival process is stopped at the start
of performance interval w. Note thatNt does not include customers serviced by servers working
overtime. Algorithm 9 is an adaptation of Algorithm 3 that allows us to determine the interval
during which a server becomes idle. The death process is outlined in Algorithm 11 (see next
section).

17

Algorithm 8 Expected number of abandonments during performance interval w

for u = Z(III)
ϕw to 1 do

for a = 1 to Z(I)
ϕw do

for all (s ∈ S) ∧ (b ∈ B) do
for all x = 0 to bu do

if u = Z(III)
ϕw then

x customers abandon:
π (δ, a, s,b − xeu) += π (1 − δ, a, s,b) Pr (x|bu, u, ϕw)(III)

Aw+= xπ (1 − δ, a, s,b) Pr (x|nb, u, ϕw)(III)

else
if Two-phase Coxian distribution is used then

for all y = 0 to x do
y customers abandon, x − y customers advance:
π (δ, a, s,b − xeu + (x − y) eu+1) +=

π (1 − δ, a, s,b) Pr (x|bu, u, ϕw)(III) Pr (y|x, ϕw)(III)

Aw+= yπ (1 − δ, a, s,b) Pr (x|nb, u, ϕw)(III) Pr (y|x, ϕw)(III)

end for
else

x customers advance a phase:
π (δ, a, s,b − xeu + xeu+1) += π (1 − δ, a, s,b) Pr (x|bu, u, ϕw)(III)

end if
end if

end for
Initialize temporary probability vector: π (1 − δ, a, s, a) = 0

end for
end for
Update binary variable: δ = 1 − δ

end for

18

3.7. Model summary
Our model enables both the transient and the (periodic) steady-state analysis of the G(t)/G(t)/s(t)+

G(t) queue. Steady-state, however, will usually not be achieved at the end of the time horizon,
hence the model has to run for multiple consecutive “cycles” (each with a length equal to the time
horizon T). Let cmax denote the number of cycles after which steady-state results are obtained.
In addition, define εc, the relative difference in queue lengths for cycles (c − 1) and c:

εc =

T∑
t=1

∣∣∣∣∣∣1 − Qt,c

Qt,c−1

∣∣∣∣∣∣ . (30)

If εc is smaller than the (user-specified) parameter εmax, cycle c is the last cycle and steady-state
results have been obtained. In other words, cmax is the smallest integer for which εcmax < εmax,
where εmax is the predefined maximum allowed deviation. In the case of a transient analysis, the
user can specify the number of cycles that needs to be processed.

In summary, Algorithm 10 models the system over T periods and cmax cycles. Algorithms 1–
7 and Equation 25 allow to compute the vector of state space probabilities at the start of period
t + 1 when departing from the vector of state space probabilities at the start of period t. Per-
formance measures are obtained using Equations 28–29 and Algorithms 8, 9 and 11, where
Algorithm 11 models the death process that is required to calculate the waiting time distribution
of a virtual customer that arrives at the start of performance interval w. Algorithm 11 is similar
to Algorithm 10, however it does not allow arrivals to take place.

Algorithm 9 Waiting time distribution of a virtual customer that arrives at the start of perfor-
mance interval w

for a = 1 to Z(I)
ϕw do

for all (s ∈ S) ∧ (b ∈ B) do
for u = Z(III)

ϕw to 1 do
if bu > 0 then

Implement change: π (δ, a, s + e1,b − eu) += π (1 − δ, a, s,b)
Customer has entered service, exit loop: u = 1

else
Update virtual waiting time distribution:
Pr (Ww = wt) += π (1 − δ, a, s,b)

end if
Initialize temporary probability vector: π (1 − δ, a, s,b) = 0

end for
end for

end for
Update binary variable: δ = 1 − δ

4. Results

We use a simulation study to assess the validity and accuracy of the model over a set of 162
problem instances. Both the Markov model and the simulation model are implemented in Visual
Studio C++. All tests are performed on a Intel I7 3.40 GHz computer, with 8 GB RAM.

19

Algorithm 10 Model summary

for a = 1 to Z(I)
φ1

do
for all (s ∈ S) ∧ (b ∈ B) do

Initialize vector: π (a, s,b)1 = 0
end for

end for
Initialize vector: π (1, 0, 0)1 = 1
Initialize cycle: c = 1
while c < cmax do

Determine whether c = cmax using Equation 30
Initialize period: t = 1
while t < T do

Perform initialization: Algorithm 1
Implement process changes: Algorithms 2, 3 and 4
Arrival of customers: Algorithm 5
Service of customers: Algorithms 3 and 6
if c = cmax and t is the start of performance interval w then

Abandonment of customers: Algorithm 8
Compute Pr (Ww = wt): Algorithm 11

else
Abandonment of customers: Algorithm 7

end if
Compute π (a, s,b)t+1 using Equation 25
Increment period: t = t + 1

end while
Increment cycle: c = c + 1

end while

20

Algorithm 11 Computation of the virtual waiting time distribution at performance interval w
Initialize period: t = w
while t < T do

Implement process changes: Algorithms 2, 4 and 9
Service of customers: Algorithms 6 and 9
Abandonment of customers: Algorithm 7
Increment period: t = t + 1
Increment virtual waiting time: h = h + 1
if h ≥ Wmax then

Maximum waiting time reached, exit loop
end if

end while
while c < ∞ do

Initialize period: t = 1
while t < T do

Implement process changes: Algorithms 2, 4 and 9
Service of customers: Algorithms 6 and 9
Abandonment of customers: Algorithm 7
Increment period: t = t + 1
Increment virtual waiting time: h = h + 1
if h ≥ Wmax then

Maximum waiting time reached, exit loop
end if

end while
Increment cycle: c = c + 1

end while

21

In what follows, we first describe the computational experiment (Section 4.1) and discuss
the main drivers of model accuracy and computation speeds (Section 4.2). Next, we validate
the model and elaborate further on the trade-off between accuracy and computation times (Sec-
tion 4.3).

4.1. Experimental setting

Table 1 provides an overview of the parameter settings that are used to construct the test set.
The parameters give rise to 162 problem instances that are representative of small- to medium-
sized systems. Each instance covers a one-day time horizon (i.e., 1440 minutes) which is divided
into smaller periods of length ∆. In the experiment, ∆ ranges from 0.0625 to 1 minute. The
arrival rate is piecewise constant over 10-minute intervals and the staffing interval has a length
of 30 minutes.

The time-varying arrival rate λ(I)
t is modeled as a discretized sine function with cycle equal

to T . Let RA(I) ≡ A/λ̄(I) denote the relative amplitude, with A the absolute amplitude and λ̄(I) the
average arrival rate over the time horizon. More formally:

λ(I)
t =

λ̄(I)

2

(
2 + RA(I) sin

(
2πt
T

)
+ RA(I) sin

(
2π (t + 1)

T

))
. (31)

Note that λ̄(I) is determined uniquely by the average capacity c̄, the average service rate λ̄(II) and
the average traffic intensity ρ̄ ≡ λ̄(I)/

(
c̄λ̄(II)

)
. Given the parameter settings in Table 1, it follows

that λ̄(I) ranges between 1 and 57 customers per hour. To limit the size of the test set, we assume
that all processes have the same C2 (i.e., 0.5, 1 or 2) and that the distributional parameters of the
service and the abandonment processes remain constant throughout the day. We emphasize that
these assumptions are not a limitation of the suggested model (that can handle different C2 values
for the arrival, service and abandonment processes, as well as time-dependence in the process
parameters).

The staffing process is modeled as a discretized sine function with relative amplitude RA(IV).
As such:

ct =
c̄
2

(
2 + RA(IV) sin

(
2πt
T

)
+ RA(IV) sin

(
2π (t + 1)

T

))
. (32)

Note that the capacity function is not shifted compared to the arrival rate function (which could
be done to account for the commonly observed congestion lag).

22

Parameter Values

Time horizon T (in min) 1440
Period length ∆ (in min) {0.0625, 0.125, 0.25, 0.5, 1}
Epoch length (arrival process, in min) 10
Epoch length (staffing process, in min) 30
Performance interval length (in min) ∆

Relative amplitude RA(I) 0.5

Average service rate λ̄(II) (customers/hour) {1, 2, 6}
Average abandonment rate λ̄(III) {0.5λ̄(II), λ̄(II)}

Average capacity c̄ {2, 5, 10}
Relative amplitude RA(IV) 0.5

Average traffic intensity ρ̄ ≡ λ̄(I)/
(
c̄λ̄(II)

)
{0.5, 0.75, 0.95}

Squared coefficient of variation C2 {0.5, 1, 2}
Maximum waiting time Wmax (in min) 240
Maximum allowed deviation εmax 0.0001

Table 1: Parameter settings used in the computational experiment

In order to validate the model, we use the expected queue length. Let QSIM
t denote the queue

length at the start of interval t. QSIM
t is obtained by means of an accurate simulation model (this

can be considered as the “true” value). The relative error (RE) at the start of period t can be
expressed as:

REt =

∣∣∣QSIM
t − Qt

∣∣∣
QSIM

t
. (33)

To obtain an aggregate performance metric over the time horizon, REt is weighted with the queue
length. As such, the weighted relative error (WRE) for a given problem instance is defined as
follows:

WRE =

T∑
t=1

QSIM

t
T∑

t=1
QSIM

t

REt

 , (34)

=

T∑
t=1

∣∣∣QSIM
t − Qt

∣∣∣
T∑

t=1
QSIM

t

. (35)

4.2. Drivers of accuracy and computation speed
We distinguish three main drivers of accuracy and computation speed:

1. The length of ∆.
2. The size of the state space.
3. The approximations used in the model.

The choice of ∆ determines the frequency at which the system is observed. Evidently, larger
values of ∆ lead to shorter computation times. Accurate results, however, can only be obtained
if ∆ is sufficiently small. During an interval of length ∆, events aggregate. The more events
aggregate (i.e., the larger the event frequency), the less accurate the results. Therefore, ∆ should
be chosen such that the number of aggregated events remains small.

23

0.50

0.60

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

0.40

0.50

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

0.30

0.40

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

0.20

0.30

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

0.10

0.20

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

0.00

0.10W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

∆ = 0.0625 ∆ = 0.125 ∆ = 0.25 ∆ = 0.5 ∆ = 1

(a) Weighted relative error

5000

6000

4000

5000

C
P

U
 t

im
e

 (
in

 s
e

c
)

3000

4000

C
P

U
 t

im
e

 (
in

 s
e

c
)

2000

3000

C
P

U
 t

im
e

 (
in

 s
e

c
)

1000

2000

C
P

U
 t

im
e

 (
in

 s
e

c
)

0

1000

∆ = 0.0625 ∆ = 0.125 ∆ = 0.25 ∆ = 0.5 ∆ = 1

(b) CPU time(in sec)

Figure 5: Weighted relative error and CPU times of test set

The size of the state space only impacts the computation time. The state space grows expo-
nentially with the required number of phases in the arrival, service and abandonment processes
and grows linearly with the maximum capacity and the maximum queue length; the latter can be
controlled by the user.

The presented model is an approximation because of three reasons. Firstly, the general ar-
rival, service and abandonment processes are approximated by means of PH distributions. Sec-
ondly, as discussed in Section 3.5.2, we assume that customers in the last phase of the aban-
donment process have waited the longest. This assumption significantly reduces the required
computational effort. Thirdly, we assume that any phase in the arrival, service and abandonment
process takes at least one interval to complete. Consequently, distributions other than the ex-
ponential distribution require lower values of ∆ to maintain accuracy. Clearly, the error that is
induced by this last assumption tends to zero as ∆ approaches zero.

We would like to point out that computation speed also depends on the number of perfor-
mance intervals that was specified. Because the performance measures are calculated at each
performance interval, an increase in the number of performance intervals will also increase the
required computation time. This especially is true for the calculation of the virtual waiting time
distribution as it involves the evaluation of a computationally intensive death process. Note that
the computation times reported in this study include the computation of all aforementioned per-
formance measures.

4.3. Model validation and results
Figure 5(a) presents a box-and-whisker diagram of the WRE for different values of ∆. It

is clear that the proposed method yields highly accurate results, provided that ∆ is sufficiently
small. Figure 5(b) shows the required CPU times in terms of ∆. We observe a clear trade-off

between accuracy and computational effort. In the remainder of this section, we further analyze
this trade-off.

The lower quantiles of Figure 5(a) show that even for high values of ∆, the model can yield
accurate results. As expected, for any value of ∆, the model is most accurate if C2 = 1. This is
illustrated in Table 2 and Figure 6. If C2 does not equal unity, the PH distributions adopt expo-
nential distributions with a mean that is smaller than the mean of the approximated distribution.
In other words, the event frequency increases. For these settings, a lower value for ∆ may be re-
quired to achieve sufficient accuracy. The performance is worst for the instances with C2 = 0.5.
These are modeled using a hypo-exponential distribution (see Section 4). For C2 = 0.5, a series

24

0.16

0.18

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

0.12

0.14

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

0.10

0.12

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

0.06

0.08

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

0.04

0.06

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

0.00

0.02

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

(W
R

E
)

C² = 0.5 C² = 1 C² = 2

Figure 6: Weighted relative error, as a function of C2 (for ∆ = 0.0625)

of two identical exponential distributions is used, with a mean that is half the mean of the approx-
imated distribution. As such, the event frequency is doubled. The accuracy tends to be better for
C2 > 1, thanks to the use of the two-phase Coxian distribution. This distribution increases the
event frequency, but to a lesser extent than the hypo-exponential distribution.

Likewise, Table 2 shows that the CPU times increase drastically for non-exponential settings.
This is no surprise, as the state space grows exponentially with the number of phases.

Weighted relative error (WRE) CPU time (in sec)
∆ C2 = 0.5 C2 = 1 C2 = 2 C2 = 0.5 C2 = 1 C2 = 2

0.0625
Min 0.008 0.001 0.004 332 3 386
Avg 0.056 0.007 0.012 3048 9 3525
Max 0.233 0.020 0.030 9504 19 11618

0.125
Min 0.010 0.002 0.003 230 2 209
Avg 0.069 0.012 0.012 1725 5 2029
Max 0.275 0.037 0.032 4930 10 5855

0.25
Min 0.013 0.004 0.002 112 1 116
Avg 0.095 0.023 0.018 845 2 1009
Max 0.352 0.071 0.072 2184 4 2667

0.5
Min 0.016 0.008 0.002 44 0 52
Avg 0.144 0.044 0.035 366 1 433
Max 0.480 0.136 0.146 1016 3 1212

1
Min 0.028 0.016 0.003 28 0 26
Avg 0.228 0.084 0.075 208 1 243
Max 0.656 0.252 0.277 501 1 624

Table 2: WRE and CPU time (in sec), as a function of C2 (for all considered ∆ values)

Figure 7 plots the trade-off between accuracy and computation time, for different values of
the average utilization (Figure 7(a)), the average service rate (Figure 7(b)), the average capacity
(Figure 7(c)) and the average abandonment rate (Figure 7(d)). In each plot, every observation

25

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

CPU time (in sec)

W
e
ig

h
te

d
 R

e
la

ti
v
e
 E

rr
o
r

(W
R

E
)

ρ=0.5

ρ=0.75

ρ=0.95

(a) Utilization

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

CPU time (in sec)

W
e
ig

h
te

d
 R

e
la

ti
v
e
 E

rr
o
r

(W
R

E
)

λ
(II)

=1

λ
(II)

=2

λ
(II)

=6

(b) Service rate

0 500 1000 1500 2000 2500 3000 3500
0

0.05

0.1

0.15

0.2

0.25

0.3

CPU time (in sec)

W
e
ig

h
te

d
 R

e
la

ti
v
e
 E

rr
o
r

(W
R

E
)

c=2

c=5

c=10

(c) Capacity

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

CPU time (in sec)

W
e
ig

h
te

d
 R

e
la

ti
v
e
 E

rr
o
r

(W
R

E
)

λ
(III)

=0.5λ
(II)

λ
(III)

=λ
(II)

(d) Abandonment rate

Figure 7: Trade-off between accuracy and computation time

point represents the combination of WRE and CPU time for a given value of ∆, averaged over
all instances characterized by a given parameter setting.

Figure 7(a) shows that smaller levels of utilization require less computational effort in order
to maintain the same level of accuracy. The same holds for service rates and capacity, as is clear
from Figures 7(b) and 7(c). For all three cases, a decrease in utilization/service rate/capacity
results in a decrease of event frequency. In addition, a decrease in capacity also results in a
decrease of the size of the state space. Therefore, a large value of ∆ may suffice to obtain
reasonable accuracy in systems that have low utilization/service rates/capacity.

From Figure 7(d), it is clear that smaller abandonment rates require more computational
effort in order to maintain the same level of accuracy. This is somewhat surprising as small
abandonment rates decrease the event frequency. They, however, also increase the utilization.
Therefore, smaller values of ∆ may be required in systems that have low abandonment rates.

We can conclude that the trade-off between accuracy and computation time is mainly in-
fluenced by (1) the event frequency, (2) the C2 values of the arrival, service and abandonment
processes and (3) the size of the state space. As a result, the model is most appropriate in settings

26

with low service rate, low utilization, low capacity or high abandonment rates.

5. Conclusions and directions for further research

In this article, we have presented a model that approximates the transient and steady-state
behavior of a G(t)/G(t)/s(t) + G(t) queueing system with an exhaustive service policy. The
model yields the following (time-varying) performance measures: (1) the expected queue length,
(2) the variance of the queue length, (3) the expected number of abandonments and (4) the
virtual waiting time distribution of a customer when arriving at an arbitrary moment in time. The
analysis does not require heavy traffic conditions (a condition that is common in existing work).
Computational experiments showed that results are highly accurate and that computational effort
remains limited, especially in small- to medium-sized systems. Problem instances with (1) a
low service rate, (2) a low average capacity, (3) a low utilization or (4) a high abandonment rate
typically required less computation time to achieve a given level of accuracy. Other problems
can be solved as well, albeit at a higher computational cost.

Existing models are often incapable of accurately capturing the (time-varying) behavior of
small- to medium-scaled systems. Our model on the other hand, excels in this. Banks, retail
stores and emergency departments are just a few of the example systems that may benefit from
our model. Our approach could, for instance, be used to evaluate the performance of alternative
personnel schedules or to determine the minimal required staffing levels. We intend to further
explore our method’s applicability within the context of capacity planning in future research.

Acknowledgments

This research was supported by the Research Foundation-Flanders (FWO) (grant no G.0547.09).

References
[1] L.V. Green, J. Soares, J.F. Giglio, R.A. Green, Using Queueing Theory to Increase the Effectiveness of Emergency Department

Provider Staffing, Academic Emergency Medicine 13(1) (2006) 61–68.
[2] L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, L. Zhao, Statistical analysis of a telephone call center: A

queueing perspective, Journal of the American Statistical Association 100(469) (2005) 36–50.
[3] D.C. Dietz, Practical scheduling for call center operations, Omega 39 (2011) 550–557.
[4] I. Castillo, T. Joro, Y.Y. Li, Workforce scheduling with multiple objectives, European Journal of Operational Research 196(1)

(2009) 162–170.
[5] A. Ingolfsson, E. Akhmetshina, S. Budge, Y. Li, A survey and experimental comparison of service level approximation methods for

non-stationary M(t)/M/s(t) queueing systems with exhaustive discipline, INFORMS Journal on Computing 19(2) (2007) 201–214.
[6] B.K.P. Chen, S.G. Henderson, Two Issues in Setting Call Centre Staffing Levels, Annals of Operations Research 108(1-4) (2001)

175–192.
[7] L.V. Green, P.J. Kolesar, W. Whitt, Coping with Time-Varying Demand When Setting Staffing Requirements for a Service System,

Production and Operations Management 16(1) (2007) 13–39.
[8] W. Whitt, What you should know about queueing models to set staffing requirements in service systems, Naval Research Logistics

54(5) (2007) 476–484.
[9] M. Defraeye, I. Van Nieuwenhuyse, Setting staffing levels in an emergency department: opportunities and limitations of stationary

queuing models, Review of Business and Economics 56(1) (2011) 73–100.
[10] A. Ingolfsson, Modeling the M(t)/M/s(t) queue with an exhaustive discipline, Working paper, University of Alberta, Canada (2005).

Available online on http://www.business.ualberta.ca/aingolfsson/publications.htm
[11] L.V. Green, P.J. Kolesar, A. Svoronos, Some Effects of Nonstationarity on Multiserver Markovian Queueing Systems, Operations

Research 39(3) (1991) 502–511.
[12] L.V. Green, P.J. Kolesar, The Pointwise Stationary Approximation for Queues with Nonstationary Arrivals, Management Science

37(1) (1991) 84–97.
[13] W. Whitt, The pointwise stationary approximation for Mt/Mt/s, Management Science 37(3) (1991) 307-314.
[14] L.V. Green, P.J. Kolesar, J. Soares, Improving the SIPP Approach for Staffing Service Systems That Have Cyclic Demands, Opera-

tions Research 49(4) (2001) 549–564.
[15] L.V. Green, P.J. Kolesar, On the Accuracy of the Simple Peak Hour Approximation for Markovian Queues. Management Science

41(8) (1995) 1353–1370.

27

[16] G.M. Thompson, Accounting for the multi-period impact of service when determining employee requirements for labor scheduling,
Journal of Operations Management 11(3) (1993) 269–287.

[17] L.V. Green, P.J. Kolesar, The Lagged PSA for Estimating Peak Congestion in Multiserver Markovian Queues with Periodic Arrival
Rates, Management Science 43(1) (1997) 80–87.

[18] S.G. Eick, W.A. Massey, W. Whitt, The Physics of the Mt/G/∞ Queue, Operations Research 41(4) (1993a) 731–742.
[19] S.G. Eick, W.A. Massey, W. Whitt, Mt/G/∞ Queues with Sinusoidal Arrival Rates, Management Science 39(2) (1993b) 241–252.
[20] Z. Feldman, A. Mandelbaum, W.A. Massey, W. Whitt, Staffing of Time-Varying Queues to Achieve Time-Stable Performance,

Management Science 54(2) (2008) 324–338.
[21] O.B. Jennings, A. Mandelbaum, W.A. Massey, W. Whitt, Server Staffing to Meet Time-Varying Demand, Management Science

42(10) (1996) 1383–1394.
[22] Y. Liu, W. Whitt, Stabilizing customer abandonment in many-server queues with time-varying arrivals, Working paper, Columbia

University, New York, NY (2009). Available online at: http://www.columbia.edu/ ww2040/recent.html
[23] D.L. Jagerman, Nonstationary blocking in telephone traffic, Bell Syst. Tech. 54 (1975) 625-661.
[24] W.A. Massey, W. Whitt, An Analysis of the Modified Offered-Load Approximation for the Nonstationary Erlang Loss Model, The

Annals of Applied Probability 4(4) (1994) 1145–1160.
[25] W.A. Massey, W. Whitt, Peak congestion in multi-server service systems with slowly varying arrival rates, Queueing Systems 25(1)

(1997) 157–172.
[26] J.L. Davis, W.A. Massey, W. Whitt, Sensitivity to the Service-Time Distribution in the Nonstationary Erlang Loss Model, Manage-

ment Science 41(6) (1995) 1107–1116.
[27] W. Whitt, Engineering Solution of a Basic Call-Center Model, Management Science 51(2) (2005) 221–235.
[28] F. Iravani, B. Balciog̃lu, Approximations for the M/GI/N + GI type call center, Queueing Systems 58(2) (2008) 137–153.
[29] D. Gross, J.F. Shortle, J.M. Thompson, C.M. Harris, Fundamentals of Queueing Theory, 4th Edition, Wiley Series in Probability

and Statistics, Wiley-Blackwell, 2008.
[30] F. Campello, A. Ingolfsson, Exact Necessary Staffing Requirements based on Stochastic Comparisons with Infinite-Server Models,

Working paper, University of Alberta, Canada (2011).
[31] L.V. Green, J. Soares, Computing time-dependent waiting time probabilities in M(t)/M/s(t) queueing systems, Manufacturing &

Service Operations Management 9(1) (2007) 54-61.
[32] L.F. Shampine, M.W. Reichelt, The MATLAB ODE Suite, SIAM Journal on Scientific Computing 18(1) (1997) 1–22.
[33] A. Jensen, Markov Chains as an Aid in the Study of Markov Processes, Skand. Aktuarietidskrift 3 (1953) 87–91.
[34] W.K. Grassmann, Transient solutions in markovian queueing systems, Computers & Operations Research 4(1) (1977) 47–53.
[35] D. Gross, D.R. Miller, The randomization technique as a modeling tool and solution procedure for transient Markov processes,

Operations Research 32(2) (1984) 343–361.
[36] M.H. Rothkopf, S.S. Oren, A Closure Approximation for the Nonstationary M/M/s Queue, Management Science 25(6) (1979)

522–534.
[37] G.M. Clark, Use of Polya distributions in approximate solutions to nonstationary M/M/s queues, Commun. ACM 24(4) (1981)

206–217.
[38] M. Taaffe, K. Ong, Approximating nonstationary Ph(t)/Ph(t)/l/c queueing systems, Annals of Operations Research 8(1) (1987)

103–116.
[39] E. Chassioti, D.J. Worthington, A New Model for Call Centre Queue Management, The Journal of the Operational Research Society

55(12) (2004) 1352–1357.
[40] M. Brahimi, Approximating multi-server queues with inhomogeneous arrival rates and continuous service time distributions, PhD

Dissertation, University of Lancaster, Lancaster, UK (1990).
[41] M. Brahimi, D.J. Worthington, The finite capacity multi-server queue with inhomogeneous arrival rate and discrete service time

distribution and its application to continuous service time problems, European Journal of Operational Research 50(3) (1991) 310–
324.

[42] A.D. Wall, D.J. Worthington, Using Discrete Distributions to Approximate General Service Time Distributions in Queueing Models,
The Journal of the Operational Research Society 45(12) (1994) 1398–1404.

[43] A.D. Wall, D.J. Worthington, Time-dependent analysis of virtual waiting time behaviour in discrete time queues, European Journal
of Operational Research 178(2) (2007) 482–499.

[44] S. Helber, K. Henken, Profit-oriented shift scheduling of inbound contact centers with skills-based routing, impatient customers,
and retrials, OR Spectrum 32(1/4) (2010) 109–134.

[45] W. Whitt, Fluid Models for Multiserver Queues with Abandonments, Operations Research 54(1) (2006a) 37–54.
[46] S. Aguir, F. Karaesmen, O.Z. Akskin, F. Chauvet, The impact of retrials on call center performance, OR Spectrum 26(3) (2004)

353–376.
[47] E. Altman, T. Jiménez, G. Koole, On the comparison of queueing systems with their fluid limits, Probability in the Engineering and

Informational Sciences 15 (2001) 165–178.
[48] T. Jiménez, G. Koole, Scaling and comparison of fluid limits of queues applied to call centers with time varying parameters, OR

Spectrum 26(3) (2004) 413–422.
[49] Y. Liu, W. Whitt, A Fluid Approximation for the GI(t)/GI/s(t)+GI Queue, Working paper, Columbia University, New York (2010).

Available online at: http://www.columbia.edu/ ww2040/allpapers.html
[50] A. Mandelbaum, W.A. Massey, Strong approximations for time-dependent queues, Mathematics of Operations Research 20(1)

(1995) 33–64.
[51] A. Mandelbaum, W.A. Massey, M.I. Reiman, R. Rider, Time varying multiserver queues with abandonments and retrials, Proceed-

ings of the 16th International Teletraffic Conference 3 (1999a) 355–364.
[52] A. Mandelbaum, W.A. Massey, M. I. Reiman, A. Stolyar, Waiting time asymptotics for time varying multiserver queues with

abandonment and retrials, Proc. 37th Allerton Conf. Monticello, IL (1999b) 1095–1104.
[53] A. Mandelbaum, W.A. Massey, M.I. Reiman, A. Stolyar, B. Rider, Queue lengths and waiting times for multiserver queues with

abandonment and retrials, Telecommunication Systems 21(2-4) (2002) 149–171.
[54] A. Mandelbaum, W.A. Massey, M. Reiman, Strong approximations for Markovian service networks, Queueing Systems 30(1)

(1998) 149–201.

28

[55] A.D. Ridley, M.C. Fu, W.A. Massey, Customer relations management: call center operations: Fluid approximations for a priority
call center with time-varying arrivals, Proceedings of the 35th Conference on Winter Simulation, New Orleans, LA, 2 (2003)
1817–1823.

[56] Y. Liu, W. Whitt, Large-Time Asymptotics for the Gt/Mt/st +GIt Many-Server Fluid Queue with Abandonment, Queueing systems
67(2) (2011b) 145–182.

[57] Y. Liu, W. Whitt, The Gt/GI/st + GI many-server fluid queue, Queueing Systems 71(4) (2012a) 405–444.
[58] Y. Liu, W. Whitt, A many-server fluid limit for the Gt/GI/st + GI queueing model experiencing periods of overloading, OR Letters

40 (2012b) 307–312.
[59] Y. Liu, W. Whitt, A Network of Time-Varying Many-Server Fluid Queues with Customer Abandonment, Operations Research 59(4)

(2011a) 835–846.
[60] A.M. Law, W.D. Kelton, Simulation modeling and analysis, McGraw-Hill series in industrial engineering and management science,

McGraw-Hill, Boston, 2000.
[61] F. McGuire, Using simulation to reduce length of stay in emergency departments, In Proceedings of the 26th conference on Winter

simulation (WSC ’94), M.S. Manivannan, J.D. Tew (Eds.). Society for Computer Simulation International, San Diego, CA, USA
(1994) 861–867.

[62] M.L Garcı́a, M.A. Centeno, C. Rivera, N. DeCario, Reducing time in an emergency room via a fast-track, In Proceedings of the
27th conference on Winter simulation (WSC ’95), C. Alexopoulos, K. Kang (Eds.). IEEE Computer Society, Washington, 1995,
1048–1053.

[63] G.W. Evans, T.B. Gor, E. Unger, A simulation model for evaluating personnel schedules in a hospital emergency department, In
Proceedings of the 28th conference on Winter simulation (WSC ’96), J.M. Charnes, D.J. Morrice, D.T. Brunner, J.J. Swain (Eds.),
IEEE Computer Society, Washington, 1996, 1205–1209.

[64] S. Takakuwa, H. Shiozaki, Functional analysis for operating emergency department of a general hospital, In Proceedings of the
36th conference on Winter simulation(WSC ’04). Winter Simulation Conference (2004) 2003–2011.

[65] G.R. Hung, S.R. Whitehouse, C.B. O’Neill, A.P. Gray, N. Kissoon, Computer Modeling of Patient Flow in a Pediatric Emergency
Department Using Discrete Event Simulation, Pediatric Emergency Care 23(1) (2007) 5–10.

[66] Ahmed, M.A., T.M. Alkhamis. 2009. Simulation optimization for an emergency department healthcare unit in Kuwait, European
Journal of Operational Research 198(3) (2009) 936–942.

[67] M. Pitt, A generalised simulation system to support strategic resource planning in healthcare, In Proceedings of the 29th confer-
ence on Winter simulation (WSC ’97), S. Andradottir, K.J. Healy, D.H. Withers, B.L. Nelson (Eds.). IEEE Computer Society,
Washington, 1997, 1155–1162.

[68] D. Sinreich, Y.N. Marmor, A simple and intuitive simulation tool for analyzing emergency department operations, In Proceedings
of the 36th conference on Winter simulation(WSC ’04). Winter Simulation Conference (2004) 1994–2002.

[69] A. Fletcher, D. Halsall, S. Huxham, D. Worthington, The DH Accident and Emergency Department model: a national generic
model used locally, Journal of the Operational Research Society 58 (2007a) 1554–1562.

[70] A. Fletcher, D.J. Worthington, What is a “generic” hospital model? Working Paper, Department of Management Science, Lancaster
University, UK (2007b).

[71] M.M. Gunal, M. Pidd, Understanding target-driven action in emergency department performance using simulation, Emergency
medicine journal 26(10) (2009) 724–727.

[72] M.F. Neuts, Matrix-geometric solutions in stochasticmodels, Johns Hopkins University Press, Baltimore, 1981.
[73] G. Latouche, V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and

Applied Probability, Philadelphia, 1999.
[74] T. Osogami, Analysis of multiserver systems via dimensionality reduction of Markov chains, PhD thesis, School of Computer

Science, Carnegie Mellon University (2005).
[75] V. Ramaswami, A stable recursion for the steady state vector in Markov chains of M/G/1 type, Stochastic Models, 4(1) (1988)

183–189.

29

FACULTY OF ECONOMICS AND BUSINESS
Naamsestraat 69 bus 3500

3000 LEUVEN, BELGIË
tel. + 32 16 32 66 12
fax + 32 16 32 67 91

info@econ.kuleuven.be
www.econ.kuleuven.be

	KBI_1306
	2013_01_30_PERF_EVAL_RR

