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Project planning with alternative technologies in

uncertain environments

Abstract: We investigate project scheduling with stochastic activity durations to maximize the expected

net present value. Individual activities also carry a risk of failure, which can cause the overall project

to fail. To mitigate the risk that an activity’s failure jeopardizes the entire project, more than one

alternative may exist for reaching the project’s objectives, and these alternatives can be implemented

either in parallel or in sequence. In the project planning literature, such technological uncertainty is

typically ignored and project plans are developed only for scenarios in which the project succeeds. We

propose a model that incorporates both the risk of activity failure and the possible pursuit of alternative

technologies. We find optimal solutions to the scheduling problem by means of stochastic dynamic

programming. Our algorithms prescribe which alternatives need to be explored, and whether they

should be investigated in parallel or in sequence. We also examine the impact of the variability of the

activity durations on the project’s value.

Managerial relevance: Project planning with traditional tools typically ignores technological and

duration uncertainty. We explain how to model scheduling decisions in a more practical environment

with considerable uncertainty, and we illustrate how decision making based only on expected values can

lead to inappropriate decisions. We also refute the intuition that an increase in uncertainty necessarily

entails a decrease of system performance, which seconds the proposal to focus also on ‘opportunity

management’ rather than only on ‘risk management.’

1 Introduction

Projects in many industries are subject to considerable uncertainty, due to many possible

causes. Factors influencing the completion date of a project include activities that are

required but that were not identified beforehand, activities taking longer than expected,

activities that need to be redone, resources being unavailable when required, late de-

liveries, etc. In research and development (R&D) projects, there is also the risk that

activities may fail altogether, requiring the project to be halted completely. This risk is

often referred to as technical risk. We focus on two main sources of uncertainty in R&D

projects, namely uncertain activity durations and the possibility of activity failure. We

examine the impact of these two factors on optimal planning strategies that maximize

the project’s value, and on its value itself.

We consider a single firm facing an R&D project with many possible development

patterns. The project is composed of a number of R&D activities with well-defined
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precedence relationships, where each activity is characterized by a cost, a duration and

a probability of success. The successful completion of an activity can correspond to a

technological discovery or scientific breakthrough, for instance. To mitigate the risk that

an activity’s failure jeopardizes the entire project, the same outcome can be pursued in

several different ways, where one success allows the project to continue. The different

attempts can be multiple trials of the same procedure or the pursuit of different alternative

ways to achieve the same outcome, e.g., the exploration of alternative technologies. These

alternatives can be pursued either in parallel or sequentially, or following a mix of both

strategies, and management can also decide not to pursue certain alternatives, for instance

because their cost is too high compared to their expected benefits. Following Baldwin

and Clark [5], a unit of alternative interdependent tasks with a distinguished deliverable

will be called a module.

Project profitability is often measured by the project’s net present value (NPV), the

discounted value of the project’s cash flows. This NPV is affected by the project schedule

and therefore, the timing of expenditures and cash inflows has a major impact on the

project’s financial performance, especially in capital-intensive industries. The goal of this

paper is to find optimal scheduling strategies that maximize the expected NPV (eNPV)

of the project while taking into account the activity costs, the cash flows generated by

a successful project, the variability in the activity durations, the precedence constraints,

the likelihood of activity failure and the option to pursue multiple trials or technologies.

Thus, this paper extends the work of Buss and Rosenblatt [11], Benati [10], Sobel et

al. [45] and Creemers et al. [14], who focus on duration risk only, and of Schmidt and

Grossmann [44], Jain and Grossmann [26] and De Reyck and Leus [17], who look into

technical risk only (although Schmidt and Grossmann [44] also explore the possibility of

introducing multiple discrete duration scenarios). Our models are also related to those

of Nelson [39], Abernathy and Rosenbloom [1], Weitzman [50], Granot and Zuckerman

[23], Eppinger et al. [20], Krishnan et al. [27], Dahan [16], Loch et al. [31], Ding and

Eliashberg [18], Ünlüyurt [48], and Roemer and Ahmadi [43], who investigate the parallel

pursuit of alternative technologies in a variety of different settings.

Our contributions are fourfold: (1) we introduce and formulate a generic model for op-

timally scheduling R&D activities with stochastic durations, non-zero failure probabilities

and modular completion subject to precedence constraints; (2) we develop a dynamic-

programming recursion to determine an optimal policy for executing the project while

maximizing the project’s eNPV, extending the algorithm of Creemers et al. [14] with ac-

tivity failures, multiple trials and phase-type (PH) distributed activity durations instead
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of exponentials; (3) we conduct numerical experiments to demonstrate the computational

capabilities of the algorithm; and (4) we examine the impact of activity duration risk on

the optimal scheduling policy and project values. Interestingly, our findings indicate that

higher operational variability does not always lead to lower project values, meaning that

(sometimes costly) variance reduction strategies are not always advisable.

The remainder of this text is organized as follows. Section 2 contains an overview

of related work. In Section 3, we provide the necessary definitions, leading to a de-

tailed problem statement in Section 4. We produce solutions by means of a backward

dynamic-programming recursion in a Markov decision chain, which is discussed in Sec-

tion 5. Section 6 reports on our computational performance on a representative set of

test instances. The effect of variability of activity durations on the eNPV of a project

is subsequently informally discussed by means of an illustration in Section 7. Section 8

contains a brief summary of the paper.

2 Related work

In the absence of resource constraints, the minimization of a project’s expected duration

is easily accomplished by starting each activity as soon as its predecessors are completed.

When the activity durations are stochastic, we are dealing with the so-called PERT

problem, for which most of the literature studies the computation of certain characteristics

of the minimum project makespan, mainly the exact computation, approximation and

bounding of its distribution function and expected value [2, 19, 28, 33].

In a deterministic setting, project scheduling to maximize NPV has already been

studied under a broad range of contractual arrangements and planning constraints (see

Herroelen et al. [24] for a review). Sobel et al. [45] extend these models to incorporate

stochastic activity durations and describe how to find the best policy from a finite set of

scheduling policies. A similar problem is studied by Benati [10], who proposes a heuristic

scheduling rule. Next to stochastic durations, Buss and Rosenblatt [11] also consider

activity delays.

We incorporate the concept of activity success or failure into the analysis of projects

with stochastic activity durations. De Reyck and Leus [17] develop an algorithm for

project scheduling with uncertain activity outcomes where all activity cash flows during

the development phase are negative, which is typical for R&D projects, and where project

success is achieved only if all individual activities succeed. Their work constitutes the first

description of an optimal approach for handling activity failures in project scheduling, but
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neither stochastic activity durations nor the possibility of pursuing multiple alternatives

for the same result are accounted for. In that paper, if an activity A ends no later than

the start of another activity B then knowledge of the outcome (success or failure) of

A can sometimes be used to avoid incurring the cost for B, since a failure in A would

allow abandoning the project, but payment for B cannot be avoided when B has already

started before the outcome of A is discovered. For a given selection of such information

flows between activities (under the form of additional precedence constraints), a late-

start schedule is then optimal when the activity durations are known. The challenge,

of course, is to find the optimal set of information flows. Earlier papers have studied

optimal procedures for special cases; see Chun [12], for instance.

Unfortunately, late-start scheduling is difficult to implement in case of stochastic

durations, and Sobel et al. [45] implicitly restrict their attention to scheduling policies

that start activities only at the end of other activities. Buss and Rosenblatt [11] partially

relax this restriction by starting an activity only after a fixed time interval (delay), but

they do not decide which sets of activities to start at what time (all eligible activities are

started as soon as possible after their delay). Creemers et al. [14] study the same problem

as Sobel et al. [45] and achieve significant computational performance improvements. In

this article, we will also restrict our attention to policies that start activities at the

completion time of other activities. Finally, Coolen et al. [13] look into the properties of

different classes of scheduling policies for modular networks on a single machine; since no

discounting is applied, durations become irrelevant.

Other references relevant to this text stem from the discipline of chemical engineer-

ing, mainly the work by Grossmann and his colleagues (e.g., [44, 26]), who studied the

scheduling of failure-prone new-product development (NPD) testing tasks when non-

sequential testing is admitted. They point out that in industries such as chemicals and

pharmaceuticals, the failure of a single required environmental or safety test may prevent

a potential product from reaching the marketplace, which has inspired our modeling of

possible activity and project failure. Therefore, our models are also of particular interest

to drug-development projects, in which stringent scientific procedures have to be followed

in distinct stages to ensure patient safety, before a medicine can be approved for produc-

tion. Such projects may need to be terminated in any of these stages, either because the

product is revealed not to have the desired properties or because of harmful side effects.

Illustrations of modeling pharmaceutical projects, with a focus on resource allocation,

can be found in Gittins and Yu [22] and Yu and Gittins [51].

Due to the risk of activity failure resulting in overall project failure, it has been sug-
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gested that R&D projects should explore multiple alternative ways for developing new

products (Sommer and Loch [46]). Thus, we include in our model alternative technologies

or multiple trials. Weitzman [50] identifies an optimal sequential scheduling strategy of

alternatives, each characterized by a cost, duration, and a reward probability distribu-

tion, which maximizes the expected present value. Weitzman’s Pandora’s rule is to select

the attempt with the highest reservation price (a measure that reflects each alternative’s

characteristics), to observe the stochastic outcome and to stop if the outcome is higher

than the reservation prices of all the remaining alternatives. Granot and Zuckerman [23]

examine the sequencing of R&D projects with success or failure in individual activities.

Like Weitzman [50], they only consider sequential stages, but they assume that each stage

is interrupted as soon one activity in that stage is successful. Nelson [39] and Abernathy

and Rosenbloom [1] demonstrate the value of scheduling alternative activities in paral-

lel. Nelson [39] aims to achieve a given objective at minimum cost. He characterizes

the optimal number of parallel development activities and shows that parallelism is most

beneficial when the cost of executing multiple alternatives is relatively small. Abernathy

and Rosenbloom [1] look at a case with two alternatives and show that while parallel exe-

cution is more expensive, it adds value by enabling a choice between the two technologies

if both are successful, and by fast-tracking the project in case one of the technologies

fails.

Dahan [16] examines the trade-off between parallel and sequential scheduling of alter-

native prototype development methods with Bernoulli outcomes. He explores the optimal

scheduling of homogeneous prototypes with identical characteristics and shows that for

high discount rates the optimal policy is a hybrid policy, whereas with low discount rates

a purely sequential policy is optimal. His analysis also demonstrates that extremely high

or low probabilities of technical success (PTS) reduce the variability of outcomes and

lead to fewer parallel prototypes being built.

Loch et al. [31] develop a dynamic-programming model to derive the optimal testing

strategy for design alternatives. Taking into account the testing cost, lead time, prior

knowledge and learning, they find that the optimal hybrid of parallel and sequential

testing depends on the ratio of cost and time, whereby parallel processing dominates

when the cost of delay increases relative to the cost of testing and development. Ding

and Eliashberg [18] examine a project portfolio pipeline in which multiple projects are

started simultaneously in order to increase the likelihood of having at least one successful

product. In the context of concurrent engineering, parallel versus sequential scheduling

of project activities has also been addressed, among others, by Eppinger et al. [20], Krish-
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nan et al. [27] and Roemer and Ahmadi [43]. We refer to Lenfle [30] for a more extensive

literature review on parallel development strategies in project management, and to Bald-

win and Clark [5] for an elaborate description of the benefits of “modularity,” which

means splitting the design and production of technologies into independent subparts. In

this text, we will take the modular structure of the project as given, assuming that an

appropriate project network design has already been set out.

The idea of alternative work plans has recently also received attention in artificial

intelligence: Beck and Fox [8] suggest that there may be multiple alternative process

plans (routings) of an order through a factory, and they investigate how to incorporate

this issue into scheduling decisions. Bartak and Cepek [6] and Bartak et al. [7] continue

this work. In the literature on production management and automation, similar ideas of

alternative routings have been studied; see, for instance, Ahn et al. [3], Pan and Chen [42],

Nasr and Elsayed [38] and Kusiak and Finke [29]. To the best of our knowledge, however,

the literature on alternative process plans does not consider duration uncertainty nor the

possibility of activity failures.

The way in which we model project success in this paper is similar to the literature

on reliability systems, especially to the sequential testing of components of a multi-

component system in order to learn the state of the system when the tests are costly;

a comprehensive review of this area is provided in Ünlüyurt [48]. In these works, all

activities (tests) are performed in series and discounting is not considered; these two

characteristics actually go hand in hand, since it is a dominant decision to execute all

activities in series when money has no time value (see De Reyck and Leus [17]). In the

operational scheduling literature, different approaches to scheduling precedence-related

tasks with re-attempt at failure can be found in Mori and Tseng [37] and Malewicz

[34, 35].

3 Definitions

A project consists of a set of activities N = {0, . . . , n}. Some of these activities are

alternatives that pursue a similar target, representing repeated trials or technological

alternatives; such activities are gathered in one module. The set of modules is M =

{0, . . . ,m}; each module i ∈ M contains the activities Ni ⊂ N , and the set of modules

constitutes a partition of N : N =
⋃
i∈M Ni and Ni ∩ Nj = ∅ if i 6= j. Activities should

be executed without interruption. A is a (strict) partial order on M , i.e., an irreflexive

and transitive relation, which represents technological precedence constraints. (Dummy)
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Figure 1: Example module network

modules 0 and m represent the start and the end of the project, respectively; they are the

(unique) least and greatest element of the partially ordered set (M,A) and are assumed

to contain only one (dummy) activity, indexed by 0 and n, respectively. On the activities

within each module i, we also impose a partial order Bi, to allow for modeling precedence

requirements between these activities. Figure 1 illustrates these definitions. The project

consists of seven activities, N = {0, 1, 2, 3, 4, 5, 6}, where 0 and n = 6 are dummies.

There are five modules, so m = 4 : N0 = {0} , N1 = {1, 2, 3} , N2 = {4}, N3 = {5} and

N4 = {6}. In the example, B1 = {(1, 3), (2, 3)}. Note that Figure 1 actually shows the

transitive reduction of A: the order relation A also contains elements such as (0, 2) and

(1, 4), while the arcs N0 → N2 and N1 → N4 are not included in the figure.

Each activity i ∈ N\Nm has a PTS pi; we assume that p0 = 1. We do not consider

(renewable or other) resource constraints and assume the outcomes of the different tasks

to be independent. The cash flow associated with the execution of activity i ∈ N\Nm is

represented by the integer value ci and is incurred at the start of the activity. These ci

are usually non-positive, although the algorithm developed in Section 5 is able to handle

both positive and negative intermediate cash flows simultaneously. We choose c0 = 0. If

the project is successful, i.e., if every module is successful, it generates an end-of-project

payoff C ≥ 0, which is received at the start of activity n. A module is successful if at

least one of its constituent activities succeeds. Without loss of generality, we assume that

C is large enough for the project to be undertaken (otherwise, all starting times may be

set to infinity).

We define a success (state) vector as an n-component binary vector x = (x0, x1, . . . , xn−1),

with one component associated with each activity in N \ {n}. We let Xi represent the

Bernoulli random variable with parameter pi as success probability for each activity i, and

we write X = (X0, X1, . . . , Xn−1). Information on an activity’s success (the realization of

Xi) becomes available only at the end of that activity. We say that x is a realization or

scenario of X (the literature sometimes also uses the term random variate). The dura-
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tion Dj ≥ 0 of each activity j is also a stochastic variable; the vector (D0, D1, . . . , Dn−1)

is denoted by D. We use lowercase vector d = (d0, d1, . . . , dn−1) to represent one par-

ticular realization of D, and we assume Pr[D0 = 0] = 1. For the remaining activities

j ∈ N \ {0, n}, the durations Dj are mutually independent PH-distributed stochastic

variables (see Section 5.3 for more details).

The value si ≥ 0 represents the starting time of activity i; we call the (n + 1)-vector

s = (s0, . . . , sn−1, sn) a schedule,with si ≥ 0 for all i ∈ N . We assume s0 = 0 in what

follows: the project starts at time zero. For convenience, we associate a completion time

ei(s; d,x) with each module i, in the following way (here and later, we omit the arguments

if no misinterpretation is possible): ei = min{+∞; minj∈Ni|xj=1{sj + dj}}. Clearly, if the

second min-operator optimizes over the empty set then ei = +∞, implying that the

module is never successfully completed. For a given success vector x and durations d, we

say that a schedule s is feasible if the following conditions are fulfilled:

ei ≤ sj ∀(i, k) ∈ A, ∀j ∈ Nk (1)

si + di ≤ sj ∀k ∈M,∀(i, j) ∈ Bk (2)

Equations (1) are inter-module precedence constraints, while Equations (2) are intra-

module constraints. An activity’s starting time equal to infinity corresponds to not

executing the activity and therefore not incurring any related expenses, or in case of

activity n, not receiving the project payoff. In words, the necessary conditions for the

start of an activity i ∈ Nj are (1) success for all the predecessor modules of the module j

to which i belongs, and (2) completion of all predecessor activities in the same module.

We compute the NPV for schedule s as

f(s) = Ce−rsn +
n−1∑
i=1

cie
−rsi , (3)

with r a continuous discount rate chosen to represent the time value of money: the

present value of a cash flow c incurred at time t equals ce−rt. Here and below, we assume

e−0·∞ = 0. Note that symbol e is the base of the natural logarithm here, while above it

was used for module completion times; there will be little danger of confusion.
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4 Problem statement

The execution of a project with stochastic components (in our case, stochastic activity

outcomes and durations) is a dynamic decision process. A solution, therefore, cannot be

represented by a schedule but takes the form of a policy : a set of decision rules defining

actions at decision times, which may depend on the prior outcomes. Decision times are

typically the start of the project and the completion times of activities; a tentative next

decision time can also be specified by the decision maker. An action entails the start of a

precedence-feasible set of activities (no constraints in (1) or (2) are violated). In this way,

a schedule is constructed gradually as time progresses. The following requirement, the

so-called non-anticipativity constraint, is also imposed: next to the information available

at the start of the project, a decision at time t can only use information on duration

realizations and realizations of components of X that has become available before or at

time t. The technical concept of a ‘policy’ corresponds to the practical notion of a project

strategy, which can be defined as a ‘direction’ in a project (goal, plan, guideline, . . . ) that

contributes to success of the project in its environment (Artto et al. [4]).

We follow Igelmund and Radermacher [25], Möhring [36] and Stork [47], who study

project scheduling with resource constraints and stochastic activity durations, in inter-

preting every policy Π as a function Rn
≥ × Bn → Rn+1

≥ , with R≥ the set of non-negative

reals and B = {0, 1}. The function Π maps given samples (d,x) of activity durations

and success vectors to vectors s(d,x; Π) of feasible activity starting times (schedules).

For a given duration scenario d, success vector x and policy Π, sn(d,x; Π) denotes the

makespan of the schedule, which coincides with project completion. Note that not all

activities need to be completed (or even started) by sn, nor that the realization of all

Xi needs to be known. The earlier-mentioned PERT problem aims at characterizing the

random variable sn(D,1; ΠES), where policy ΠES starts all activities as early as pos-

sible, each module contains only one activity, and 1 is an n-vector with value 1 in all

components. Contrary to the makespan, however, NPV is a non-regular measure of per-

formance: starting activities as early as possible is not necessarily optimal, since the ci

may be negative.

Our goal is to select a policy Π∗ that maximizes E[f(s(D,X; Π))], with f(·) the NPV-

function as defined in Equation (3) and E[·] the expectation operator with respect to D

and X; we write E[f(Π)], for short. The generality of this problem statement suggests

that optimization over the class of all policies is probably computationally intractable.

We therefore restrict our optimization to a subclass that has a simple combinatorial

representation and where decision points are limited in number: our solution space P
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consists of all policies that start activities only at the end of other activities (activity 0

is started at time 0).

For the example that was introduced in Section 3, a possible policy Π0 is the fol-

lowing: start the project at time 0 (s0 = 0) and immediately initiate activities 1 and 2

(s1 = s2 = 0). If X1 = X2 = 0 then abandon the project: set s3 = s4 = s5 = s6 = +∞.

Otherwise, module N1 completes successfully. In that case, start both activities 4 and 5

upon the successful completion of activity 1 or 2 (whichever is the earliest), and terminate

the project if either 4 or 5 fails. Note that under policy Π0, activity 3 is never started, and

we effectively include activity selection as part of the decisions to be made. Represented

as a function, Π0 entails the following mapping:

(d0, d1, d2, d3, d4, d5, x0, x1, x2, x3, x4, x5)

7→
(0, 0, 0,∞, e1, e1,max{e2; e3}),

with e1 = min{d1 +∞ · (1 − x1); d2 +∞ · (1 − x2)}, e2 = e1 + d4 +∞ · (1 − x4) and

e3 = e1 + d5 +∞ · (1− x5). In the context of this article, we let 0 · ∞ = 0.

5 Markov decision chain

In the literature, the input parameters of the PERT problem are often referred as a PERT

network, and a PERT network with independent and exponentially distributed activity

durations is also called a Markovian PERT network. For Markovian PERT networks,

Kulkarni and Adlakha [28] describe an exact method for deriving the distribution and

moments of the earliest project completion time using continuous-time Markov chains

(CTMCs). Buss and Rosenblatt [11], Sobel et al. [45] and Creemers et al. [14] investigate

an eNPV objective and use the CTMC described by Kulkarni and Adklakha as a starting

point for their algorithms. These studies, however, assume success in all activities and

an exponential distribution for all durations and they also imply the requirement that all

activities be executed. In this article, we will extend the work of Creemers et al. [14] to

accommodate PH-distributed activity durations, possible activity failures and a modular

project network, allowing also for activity selection. Below, we first study the special case

of exponential activity durations (Section 5.1), followed by an illustration (Section 5.2)

and by a treatment of more general distributions (Section 5.3).
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5.1 The exponential case

For the moment, we assume each duration Di to be exponentially distributed with rate

parameter λi = 1/E[Di] (i = 1, . . . , n − 1); we consider more general distributions in

Section 5.3. At any time instant t, an activity’s status is either idle (not yet started),

active (being executed), or past (successfully finished, failed, or considered redundant

because its module is completed). Let I(t), Y (t) and P (t) represent the activities in

N that are idle, active and past, respectively; these three sets are mutually exclusive

and I(t) ∪ Y (t) ∪ P (t) = N . The state of the system is defined by the status of the

individual activities and is represented by a triplet (I, Y, P ). State transitions take place

each time an activity becomes past and are determined by the policy at hand. The

project’s starting conditions are Y (0) = {0} and I(0) = N \ {0}, while the condition

for successful completion of the project is P (t∗) = N , where t∗ represents the project

completion time.

The problem of finding an optimal scheduling policy corresponds to optimizing a dis-

counted criterion in a continuous-time Markov decision chain (CTMDC) on the state

space Q, with Q containing all the states of the system that can be visited by the tran-

sitions (which are called feasible states); the decision set is described below. We apply a

backward stochastic dynamic-programming (SDP) recursion to determine optimal deci-

sions based on the CTMC described in Kulkarni and Adlakha [28]. The key instrument of

the SDP recursion is the value function F (·), which determines the expected NPV of each

feasible state at the time of entry of the state, conditional on the hypothesis that optimal

decisions are made in all subsequent states and assuming that all ‘past’ modules (with all

activities past) were successful. In the definition of the value function F (I, Y ), we supply

sets I and Y of idle and active activities as parameters (which uniquely determines the

past activities). When an activity finishes, three different state transitions can occur:

(1) activity j ∈ Ni completes successfully; (2) activity j ∈ Ni fails and another activity

k ∈ Ni is still idle or active; (3) activity j ∈ Ni fails and all other activities k ∈ Ni have

already failed (or it is the only activity in the module).

We define the order B∗ on set N to relate activities that do not necessarily belong to

the same module, as follows:

(i, j) ∈ B∗ ⇔ (∃Bm : (i, j) ∈ Bm) ∨ (∃(l,m) ∈ A : i ∈ Nl ∧ j ∈ Nm).

We call an activity j eligible at time t if j ∈ I(t) and ∀(k, j) ∈ B∗ : k ∈ P (t). Let

E(I, Y ) ⊂ N be the set of eligible activities for given sets I and Y of idle and active
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activities. Upon entry of a state (I, Y, P ) ∈ Q, a decision needs to be made whether or

not to start eligible activities in E(I, Y ) and if so, which. If no activities are started, a

transition towards another state occurs at the first completion of an element of Y . Not

starting any activities while there are no active activities left, corresponds to abandoning

the project. Let λ̂ =
∑

k∈Y λk. The probability that activity j ∈ Y completes first

among the active activities equals λj/λ̂ (see Appendix 1). The expected time to the first

completion is λ̂−1 time units (the length of this timespan is also exponentially distributed)

and the appropriate discount factor to be applied for this timespan is λ̂/
(
r + λ̂

)
(cfr.

appendix). In state (I, Y, P ) ∈ Q, the expected NPV to be obtained from the next state

on condition that no new activities are started equals

λ̂

r + λ̂

∑
j∈Y

pjλj

λ̂
F (I \Ni, Y \Ni)+

λ̂

r + λ̂

∑
j∈Y :Ni\{j}6⊂P

(1− pj)λj
λ̂

F (I, Y \ {j}),
(4)

with j ∈ Ni in the summations. Our side conditions are F (I,∅) = 0 for all I.

The second alternative is to start a non-empty set of eligible activities S ⊆ E(I, Y )

when a state (I, Y, P ) ∈ Q is entered. This leads to incurring a cost
∑

j∈S cj and an

immediate transition to another state, with no discounting required. The corresponding

eNPV, conditional on set S 6= ∅ being started, is

F (I \ S, Y ∪ S) +
∑
j∈S

cj. (5)

The total number of decisions S that can be made is 2|E(I,Y )|. The decision corresponding

to the highest value in (4) and (5) determines F (I, Y ).

The backward SDP recursion starts in state (∅, {n}, N \ {n}). Subsequently, the

value function is computed stepwise for all other states. The optimal objective value

maxΠ∈P E[f(Π)] is obtained as F (N \ {0}, {0}). We should note that the policies from

which one with the best objective function is chosen, do not consider the option of

starting activities at the end of activities that are redundant (past) because another

activity already made their module succeed.
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Table 1: Project data for the example project

task i cash flow ci mean duration E[Di] PTS pi
0 0 0 100%
1 −20 10 40%
2 −35 2 35%
3 −70 8 75%
4 −10 2 100%
5 −10 2 60%
6 0 100%

5.2 Illustration

In this section, we illustrate the functioning of the SDP algorithm by analyzing the

example project with seven activities (n = 6) introduced in Section 3, for which the

module order A is described by Figure 1. Further input data are provided in Table 1; the

project’s payoff value C is 300 and the discount rate is 10 percent per time unit (r = 0.1).

For exponentially distributed activity durations, the SDP recursion described in Sec-

tion 5.1 can be applied to find an optimal policy. At the onset of the project (in state

(N \ {0},∅, {0})) we can decide to start either the first activity, the second activity, or

both, from module 1. The SDP recursion evaluates the expected outcome of each of these

decisions and selects one that yields the highest expected NPV (assuming that optimal

decisions are made at all future decision times). In our example, it is optimal to start only

the first activity (corresponding to an objective function of 3.27) and we subsequently end

up in state ({2, 3, 4, 5}, {1}, {0}), in which two possibilities arise. If activity 1 succeeds,

module 1 succeeds as well and a transition occurs to state ({4, 5},∅, {0, 1, 2, 3}); otherwise

(if activity 1 fails), we end up in state ({2, 3, 4, 5},∅, {0, 1}) and have to make a decision:

either we start activity 2, corresponding to a transition to state ({3, 4, 5}, {2}, {0, 1})
and an eNPV at that time for the remainder of the project of −1.06, or we abandon the

project altogether obtaining a current value of 0. The optimal decision in this case is

obviously not to continue the project.

After a successful completion of module 1, two new activities become eligible. The

optimal decision is to start both activities 4 and 5, leading to state (∅, {4, 5}, {0, 1, 2, 3}).
Two possibilities then arise: either activity 4 or activity 5 finishes first. Irrespective of

which activity completes first, if either activity 4 or 5 fails then the entire project fails. If

activity 4 (resp. 5) finishes first and succeeds, activity 5 (resp. 4) is still in progress and

needs to finish successfully for the project payoff to be earned. We refer to this optimal

policy for exponential durations by the name Π1.
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Figure 2: Optimal paths in the decision tree for the example project

The relevant part of the corresponding decision tree is represented in Figure 2, in

which the project evolves from left to right. A decision node, represented by a square,

indicates that a decision needs to be made at that point in the process; a chance node,

denoted by a circle, indicates that a random event takes place. Underneath each decision

node, we indicate the eNPV conditional on an optimal decision being made in the node,

which applies only to the part of the project that remains to be performed. For each

decision node, a double dash // is added to each branch that does not correspond to an

optimal choice in the SDP recursion.

5.3 Generalization towards PH distributions

PH distributions were first introduced by Neuts [40] as a means to approximate general

distributions using a combination of exponentials. We will adopt so-called acyclic PH

distributions for the activity durations in order to assess the impact of activity duration

variability on the eNPV of a project. In this section, we informally describe PH distribu-

tions and show how to determine the optimal eNPV of a project when activity durations

are PH distributed. Formal definitions and a moment-matching approach that can used

to approximate an arbitrary distribution are included as Appendix 2 and Appendix 3.

Due to the properties of the acyclic PH distribution, each activity j 6= 0, n can be

seen as a sequence of zj phases where:

• each phase θju has an exponential duration with rate λju,

• each phase θju has a probability τju to be the initial phase when starting activity j,

• each phase θju is visited with a given probability πjvu when departing from another

phase θjv.
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Acyclicity of the distribution implies that a state is never visited more than once. Since

the execution of a task is non-preemptive, the execution of the sequence of phases as well

as the execution of a phase itself should be uninterrupted. Therefore, upon completion

of a phase θju:

• activity j completes with probability πju0 (absorption is reached in the underlying

Markov chain),

• phase v is started with probability πjuv.

The exponential distribution for activity j ∈ N \ {0, n} is then a PH distribution with

zj = 1, τj1 = 1 and λj1 ≡ λj.

Maintaining the definition of Y (t) given in Section 5.1, define Y ◦(t) as the set of

phases of the activities in Y (t) that are being executed at time instant t. Clearly, Y can

be obtained from Y ◦. The state of the system is again fully determined by the status

of the individual activities and is now represented by a triplet (I, Y ◦, P ). The SDP

recursion described in the previous subsection for computing function F is easily extended

to accommodate PH distributions; the most important modification is in Equation (4),

which becomes

λ̂◦

r + λ̂◦

∑
θju∈Y ◦

πju0
pjλju

λ̂◦
F (I \Ni, Y

◦ \N◦i )+

λ̂◦

r + λ̂◦

∑
θju∈Y ◦:Ni\{j}6⊂P

πju0
(1− pj)λju

λ̂◦
F (I, Y ◦ \ {θju})+

λ̂◦

r + λ̂◦

∑
θju∈Y ◦

λju

λ̂◦

zj∑
v=1
v 6=u

πjuvF (I, Y ◦ ∪ {θjv} \ {θju}),

(6)

with j ∈ Ni, λ̂
◦ =

∑
θkv∈Y ◦ λkv and N◦i = {θku : k ∈ Ni}. We use the result that the

probability that phase θju ∈ Y ◦ completes first among the active phases equals λju/λ̂
◦

and that the expected time to the first completion is λ̂◦
−1

time units.

6 Computational performance

In this section, we will briefly evaluate the computational performance of the SDP algo-

rithm. For exponential durations, an upper bound on |Q| is 3n. Enumerating all these 3n

states is not recommendable, because typically the majority of the states do not satisfy

the precedence constraints. For PH durations, the bound becomes
∏

j∈N 3zj . In order to
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minimize storage and computational requirements, we adopt the techniques proposed by

Creemers et al. [14]: as the algorithm progresses, the information on the earlier generated

states will no longer be required for further computation and therefore the memory occu-

pied can be freed. This procedure is based on a partition of Q, allowing for the necessary

subsets to be generated and deleted when appropriate.

We borrow the datasets that were generated by Coolen et al. [13]: these consist of

10 instances for each of various values of the number of activities n and for OS = 0.4,

0.6 and 0.8, with ‘order strength’ OS the number of comparable activity pairs according

to the induced order B∗, divided by the maximum possible number of such pairs (this

value is only approximate). Average activity durations are not used by Coolen et al. [13]

and are additionally generated for each activity, for each instance separately; each such

average duration is a uniform integer random variate between 1 and 15. The sign of the

cash flows is unimportant to our algorithm; in the generated instances, all activities apart

from the final one have negative cash flows.

In our implementation, storage requirement for 600, 000 states amounts to a maximum

of 4.58 MB; we only generate feasible states. Our experiments are performed on an AMD

Phenom II with 3.21 GHz CPU speed and 2, 048 MB of RAM. Under this configuration,

a state space of maximum 268, 435, 456 states can be entirely stored in memory. Our

results are presented in Tables 2-4, gathered per combination of values for OS and n.

The tables show that networks of up to 40 activities are analyzed with relative ease.

When n = 51, however, the optimal solution of most networks with low order strength

(OS = 0.4) is beyond reach when the system memory is restricted to 2, 048 MB. When

OS = 0.6, the performance is limited to networks with n = 71 or less. We observe that

the density of the induced order B∗ is a major determinant for the computational effort:

order strengths and computation times clearly display an inverse relation.

7 Impact of activity duration variability

In this section, we examine the impact of different degrees of variability of the activity

durations for the example project instance. The policy Π1 described in Section 5.2 is

optimal with exponential durations; its objective value is 3.27. The quality of the policy

changes when the variability level is different, however. Figure 3(a) illustrates the func-

tioning of policy Π1 with deterministic durations: the policy first executes only activity 1,

and then starts both activity 4 and 5 if 1 succeeds, otherwise the project is abandoned.
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Table 2: Number of successfully analyzed networks out of 10

n OS = 0.8 OS = 0.6 OS = 0.4
11 10 10 10
21 10 10 10
31 10 10 10
41 10 10 7
51 10 10 5
61 10 6 3
71 9 5 3
81 10 4 1
91 9 4 0
101 10 1 0
111 9 1 0
121 8 0 0

Table 3: average size of the state space (|Q|) for analyzed networks

n OS = 0.8 OS = 0.6 OS = 0.4
11 74 248 628
21 396 4, 303 29, 793
31 2, 174 192, 984 911, 558
41 15, 871 1, 619, 351 25, 051, 988
51 98, 559 1, 940, 598 90, 057, 422
61 177, 916 29, 540, 126 278, 145, 443
71 2, 260, 271 85, 611, 285 82, 971, 948
81 2, 070, 967 34, 261, 271 176, 976, 352
91 23, 128, 416 145, 911, 293
101 24, 804, 064 165, 306, 852
111 67, 477, 195 56, 193, 712
121 69, 245, 416

The objective function value for Π1 with deterministic durations (E[f(Π1)]) is

c1 + p1e
−rE[D1]

(
c4 + c5 + p4p5Ce

−rE[D5]
)

= −1.26.

An optimal policy Π2 for this setting is described by Figure 3(b), with eNPV (E[f(Π2)])

c2 + p2e
−rE[D2]

(
c4 + c5 + p4p5Ce

−rE[D5]
)

= 1.50.

Here, activity 2 is started at the project’s initiation, and activity 1 is never selected (i.e.,

upon failure of activity 2 the project is abandoned). With exponential durations, on the

other hand, Π2 has an objective value of −1.06. Interestingly, the inferior policy in the

case of exponential durations becomes optimal when activity durations are deterministic.
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Table 4: average CPU time required to find an optimal policy

n OS = 0.8 OS = 0.6 OS = 0.4
11 0 0 0
21 0 0 0.03
31 0 0.3 1.77
41 0.02 3.54 70.93
51 0.15 5.12 298.41
61 0.32 128.31 2, 397.93
71 17.53 469.34 27, 065.53
81 5.7 1817.54 15, 605.91
91 107.61 1, 322.77
101 105.66 894.61
111 283.57 10, 540.86
121 528.81
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(a) Policy Π1
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(b) Policy Π2

Figure 3: Policies with deterministic durations

Also, the effect of variability on the eNPV associated with a policy is not monotonic;

the eNPV of policy 1 increases, whereas the eNPV of policy 2 decreases. Of particular

interest is the fact that the eNPV can actually increase when variability is introduced,

which is quite counterintuitive. Note also that for each of the two variability settings, the

sign of the objective of two policies is different (one policy achieves a negative NPV while

the other one has positive NPV). This is a strong case for incorporating all variability

information into the computations and not only ‘plugging in’ the expectations into a

deterministic model, since a good project might be cut from the portfolio based only

expected values, whereas it would be able to add value with a carefully selected scheduling

strategy.

To investigate the impact of variability in more detail, we use PH distributions to

model the activity durations, which will allow us to increase or decrease the variability

and examine its impact on the project’s eNPV, by changing the Squared Coefficient of

Variation (SCV) of the activity durations (for simplicity, we assume all activity durations

to have equal SCV). Setting SCV equal to 1 corresponds to exponentially distributed
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Figure 4: The effect of activity duration variability for the example project

activity durations, an SCV equal to 0 corresponds to deterministic durations.

Figures 4(a) and 4(b) report the eNPV of the example project for various values

of SCV, executed according to policy Π1 and policy Π2, respectively. We observe that

eNPV decreases with SCV for policy Π2. Policy Π1, on the other hand, exhibits a U-

shaped relationship between the SCV and project eNPV. In this particular instance, the

eNPV of the project is largest when activity durations are highly uncertain (exponentially

distributed). This contrasts with the intuition that an increase in uncertainty necessarily

entails a decrease of system performance. Figure 4(c) depicts the eNPV of the optimal

policy for each level of duration variability; here the U-shaped pattern is more pronounced.

Again, we find that higher operational variability does not always lead to lower project

values.
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Ward and Chapman [49] argue that all current project risk-management processes

induce a restricted focus on the management of project uncertainty. In part, this is

because the term ‘risk’ encourages a ‘threat’ perspective: we refer the reader to the ex-

amples of risk events in the model for variability reduction by Ben-David and Raz [9] and

Gerchack [21]. Ward and Chapman state that a focus on ‘uncertainty’ rather than risk

could enhance project risk management, providing an important difference in perspective,

including, but not limited to, an enhanced focus on opportunity management, an ‘oppor-

tunity’ being a ‘potential welcome effect on project performance.’ Ward and Chapman

suggest that management strive for a shift from a threat focus towards greater concern

with understanding and managing all sources of uncertainty, with both up-side and down-

side consequences, and explore and understand the origins of uncertainty before seeking

to manage it. They suggest using the term ‘uncertainty management,’ encompassing

both ‘risk management’ and ‘opportunity management.’ The suggestions of Ward and

Chapman are seconded from an operational viewpoint by our computational results. See

also Loch et al. [32] for examples of how downside risks can sometimes be turned into

upside opportunity (e.g., p. 5 and p. 20).

8 Summary and conclusions

In this article, we have developed a generic model for the optimal scheduling of R&D-

project activities with stochastic durations, non-zero failure probabilities and multiple

trials subject to precedence constraints. We assess the effect of different degrees of ac-

tivity duration variability on the expected NPV of a project. We illustrate that higher

operational variability does not always lead to lower project values, meaning that (some-

times costly) variance reduction strategies are not always advisable.

Appendix 1 Some technical results used in Section 5.1

Suppose that Xi ∼ Exp(λi) for i = 1, . . . , ω, so the cdf of Xi is FXi
(t) = 1 − e−λit, and

that the Xi are independent. It then holds that Y = mini=1,...,ω{Xi} is also exponential,

with rate
∑

i λi. This can be seen as follows:
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FY (t) = Pr[Y ≤ t] = 1− Pr[Y > t]

= 1− Pr[X1 > t] · . . . · Pr[Xω > t]

= 1− e−λ1t · . . . · e−λωt

= 1− exp

(
−t
∑
i

λi

)
,

which we recognize as the cdf of an exponential variable with the mentioned rate.

The following is a classic result known as that of ‘competing exponentials’:

Pr[k = arg min
i=1,...,ω

{Xi}] =
λk∑
i λi

.

For ω = 2, we have

Pr[X1 ≤ X2] =

∫ ∞
0

∫ ∞
t1

λ1e
−λ1t1λ2e

−λ2t2dt2dt1

=

∫ ∞
0

λ1e
−λ1t1e−λ2t1dt1

= λ1

∫ ∞
0

e−(λ1+λ2)t1dt1

=
λ1

λ1 + λ2

∫ ∞
0

e−udu =
λ1

λ1 + λ2

.

These integrals generalize straightforwardly to compute Pr[(Xk ≤ X1)∧(Xk ≤ X2)∧ . . .].
In a very similar way, the appropriate discount factor in expectation, with continuous

per-unit discount rate r over the timespan Y = mini=1,...,ω{Xi}, can be obtained as

follows. We determine the present value e−rY of a cash flow of 1 at time Y . Above, we

have already established the distribution of Y . We obtain

∫ ∞
0

e−rt

(∑
i

λi

)
e−(

∑
i λi)tdt = . . . =

∑
i λi

r +
∑

i λi
.

One might argue that these computations are insufficient for application in Section 5

because the cash flow to be discounted actually depends on which of the Xi is the smallest.

We now show that this does not preclude the foregoing simple result from being applied.
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Define the function

ζ(X1, X2, . . . , Xω) =
c1 if X1 ≤ X2, X1 ≤ X3, . . .,

c2 if X2 < X1 and X2 ≤ X3, X2 ≤ X4, . . .,
...

cω if Xω < X1, Xω < X2, . . ..

We wish to determine the expected discounted value of ζ. We find∫ ∞
0

c1e
−rt1 .λ1e

−λ1t1 .e−
∑

i 6=1 λit1dt1+∫ ∞
0

c2e
−rt2 .λ2e

−λ2t2 .e−
∑

i 6=2 λit2dt2+

. . .∫ ∞
0

cωe
−rtω .λωe

−λωtω .e−
∑

i6=ω λitωdtω

=
λ1c1

r +
∑

i λi
+

λ2c2

r +
∑

i λi
+ . . .+

λωcω
r +

∑
i λi

=

( ∑
i λi

r +
∑

i λi

)(
λ1∑
i λi

c1 + . . .+
λω∑
i λi

cω

)
.

The first term of the right-hand side of the final line of these equations is exactly the

discount factor that we already obtained, while the second term is the expectation

E[ζ(X1, . . . , Xn)] of ζ without discounting. In other words, we can separate the com-

putation of the expected value and the application of the discounting factor.

Appendix 2 Definition of a PH distribution

A PH distribution with parameter (τ ,T), denoted by PH(τ,T), is the distribution of

the time until absorption into state 0 in a Markov chain on the states {0, 1, . . . , z} with

initial probability vector τ = {τ0, τ1, . . . , τz} and infinitesimal generator

Q =

[
0 0

t T

]
,

where T is the matrix containing the transition rates between transient states {1, . . . , z},
0 is a row vector of zeroes and t = −Te, where e is a column vector of ones. In

addition, define the stochastic matrix P of the corresponding embedded discrete-time
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Markov chain. Let πuv and quv denote the vth entry of the uth row of the embedded

Markov chain P and the infinitesimal generator Q, respectively. The entries of P are

computed as follows:

πuv =


− quv
quu

if u > 0 ∧ u 6= v,

1 if u = 0 ∧ v = 0,

0 otherwise.

We will consider only acyclic PH distributions, in which each state is never visited

more than once in the Markov chain whose absorption time defines the PH distribution.

Examples of acyclic PH distributions include: the exponential, the Erlang, the hypo-

exponential, the hyper-exponential and the Coxian distribution (Osogami [41]). Note

that for acyclic PH distributions, it is possible to index the statespace such that T is an

upper-triangular matrix.

In this article, we distinguish three PH distributions: (1) the exponential distribution;

(2) the hypo-exponential distribution; and (3) the two-phase Coxian distribution. An

exponential distribution with rate parameter λ is an acyclic PH distribution with initial

probability vector τ = {0, 1} and infinitesimal generator

Q =

[
0 0

λ −λ

]
.

The exponential distribution itself is the simplest of PH distributions. An Erlang dis-

tribution is the convolution of z exponentials that have identical rate parameter λ.

The corresponding acyclic PH distribution has z phases, initial probability vector τ =

{0, 1, 0, . . . , 0} and infinitesimal generator

Q =



0 0 0 . . . 0 0

0 −λ λ . . . 0 0

0 0 −λ . . . 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 . . . −λ λ

λ 0 0 . . . 0 −λ


.

A hypo-exponential distribution or generalized Erlang distribution is the convolution of

z exponential distributions with possibly different rate parameters. The corresponding

acyclic PH distribution has z phases, initial probability vector τ = {0, 1, 0, . . . , 0} and
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infinitesimal generator

Q =



0 0 0 . . . 0 0

0 −λ1 λ1 . . . 0 0

0 0 −λ2 . . . 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 . . . −λz−1 λz−1

λz 0 0 . . . 0 −λz


.

A two-phase Coxian distribution is a mixture of two exponential distributions and corre-

sponds to an acyclic PH distribution that has initial probability vector τ = {0, 1, 0} and

infinitesimal generator

Q =


0 0 0

(1− β)λ1 −λ1 βλ1

λ2 0 −λ2

 .
A transition is made from the first phase towards the second phase with probability β.

If the second phase is not visited (with probability 1 − β), absorption takes place after

visiting the first phase.

Appendix 3 Moment matching

Let λ−1 and σ2 denote the mean and variance of a random variable X, respectively. The

squared coefficient of variation of X is ϕ2 = σ2λ2. We describe the two-moment matching

procedure described in Creemers et al. [15] that allows to determine the parameters of

the PH distribution that matches the mean and the variance of X.

We distinguish three cases. The first case is ϕ < 1; then a hypo-exponential can be

used to model X’s distribution, with the following parameters:

z = dϕ−2e,

λz =
1 +

√
(z − 1) (zϕ2 − 1)

λ (1− zϕ2 + ϕ2)
,

λu =
(z − 1)−

√
(z − 1) (zϕ2 − 1)

λ (1− ϕ2)
,

for all u ∈ {1, 2, . . . , z − 1}. The initial probability vector of the corresponding PH
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distribution is defined as follows:

τu =

{
1 if u = 1,

0 otherwise.

Alternatively, ϕ > 1 and X can be modeled via a two-phase Coxian distribution with

parameters

τ0 = 0,

τ1 = 1,

τ2 = 0,

β =
2 (κ− 1)2

1 + ϕ2 − 2κ
,

λ1 =
λ

κ
,

λ2 =
2λ (κ− 1)

2κ− 1− ϕ2
,

where κ is a value that can be chosen to determine the expected duration of the first

phase. In this article we assume κ = 0.5.

The third case is ϕ = 1 and X is then approximated by an exponential distribution,

so

τ0 = 0,

τ1 = 1,

λ1 = λ.
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