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Abstract - Project risk management aims to provide insight into
the risk profile of a project as to facilitate decision makers to mit-
igate the impact of risks on project objectives such as budget and
time. A popular approach to determine where to focus mitigation
efforts, is the use of so-called ranking indices (e.g., the critical-
ity index, the significance index etc.). Ranking indices allow the
ranking of project activities (or risks) based on the impact they
have on project objectives. A distinction needs to be made be-
tween activity-based ranking indices (those that rank activities)
and risk-driven ranking indices (those that rank risks). Because
different ranking indices result in different rankings of activities
and risks, one might wonder which ranking index is best. In this
article, we provide an answer to this question. Our contribution is
threefold: (1) we set up a large computational experiment to assess
the efficiency of ranking indices in the mitigation of risks, (2) we
develop two new ranking indices that outperform existing rank-
ing indices and (3) we show that a risk-driven approach is more
effective than an activity-based approach.

Keywords - project risk management, risk mitigation, ranking
index

1 Introduction

It is well known that projects worldwide are still struggling to meet their
objectives (The Standish Group 2009). During project execution, unforeseen
events arise that disrupt plans and budgets and that result in substantial
overruns. Risk management is widely recognized as a compulsory discipline
to deal with this kind of project uncertainty.
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Figure 1: Overview of the risk analysis process

The Project Management Institute (2008) defines risk management as the
process that deals with the planning, identification, analyzing, responding,
monitoring and controlling of project risks. In this article, we focus on the
risk analysis process and its effect on the risk response process. The risk
analysis process can be divided into a number of subprocesses: risk priori-
tization, quantitative risk assessment and quantitative risk evaluation. Risk
prioritization is a qualitative procedure that allows to prioritize the risks that
were identified in an earlier stage of the risk management process. It requires
ordinal estimates of both the probability of occurrence and the impact of a
risk. These ordinal estimates are then used to create a shortlist of high pri-
ority risks (analogous to the Pareto principle). Further risk analysis efforts
should focus on these high priority risks. Quantitative risk assessment is the
procedure in which experts provide detailed estimates of the probability of
occurrence and the impact of high priority risks. These estimates are used in
the quantitative risk evaluation procedure to analyze the impact of the short-
listed risks on overall project objectives. Figure 1 provides a short overview
of the dynamics of the risk analysis process.

Good risk management requires a risk analysis process that is scientifi-
cally sound and that is supported by quantitative techniques (Hubbard 2008).
A wide body of knowledge on quantitative techniques has been accumulated
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over the last two decades. Monte Carlo simulation is the predominant quanti-
tative risk evaluation technique in both practice and in literature. Advocates
of alternative techniques such as neural networks, fuzzy logic and decision
tree analysis have debatable arguments in favor of these techniques, but have
so far failed to persuade most project schedulers of their practical use (refer
to Sadeghi et al. (2009) and Georgieva et al. (2009) among others for an
evaluation of risk analysis techniques).

The goal of the risk analysis process is to generate insight into the risk
profile of a project and to use these insights to drive the risk response process
(The Project Management Institute 2008). The insights generated include:
the probability of achieving a specific project outcome, the distribution func-
tion of the project completion time, etc. The risk response process will use
these insights to define practical risk responses that allow project managers
to mitigate risks (i.e., to reduce the impact of risks on project objectives).
A popular approach to determine where to focus mitigation efforts is the
use of so-called ranking indices (e.g., the criticality index, the significance
index, etc.). Ranking indices allow the ranking of project activities (or risks)
based on their impact on project objectives. A distinction needs to be made
between activity-based ranking indices (those that rank activities) and risk-
driven ranking indices (those that rank risks). Note that the impact of an
activity (or risk) on a project objective may differ depending on the ranking
index used, resulting in the question: which ranking index is best? It is
exactly this question that we will address in this article.

The contribution of this article is threefold: (1) we set up a large com-
putational experiment to assess the mitigation efficiency of ranking indices,
(2) we develop two new ranking indices that outperform existing ranking in-
dices and (3) we show that a risk-driven approach is more effective than an
activity-based approach. We assume risks to impact the duration of activi-
ties and hence use the project completion time to evaluate the performance
of ranking indices (i.e., we assess the potential of ranking indices to mitigate
risks that delay the completion time of a project). In order to approximate
the distribution of the project completion time, we adopt Monte Carlo sim-
ulation.

The remainder of this article is organized as follows: in section 2 we review
the basic principles of stochastic project scheduling. Section 3 introduces
the risk-driven approach and compares it to the activity-based approach.
Section 4 presents the ranking indices. The computational experiment as well
as the performance of the ranking indices are discussed in section 5. Section 6
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presents a number of additional experiments and section 7 concludes. A list
of notation is provided in the appendix.

2 Stochastic project scheduling

The Critical Path Method (CPM) is developed in the 50’s by DuPont Cor-
poration and provides the foundations of modern project scheduling (Kel-
ley 1963). It represents a project as an activity network which is a graph
G = (N,A) that consists of a set of nodes N = {1, 2, . . . , n} and a set of
arcs A = {(i, j)|i, j ∈ N}. The nodes represent project activities whereas
the arcs that connect the nodes represent precedence relationships. Activi-
ties 1 and n are referred to as the dummy-start and the dummy-end activity
and represent the start and the completion of the project respectively. Each
activity j has a deterministic activity duration dj and can only start when
its predecessors have finished. CPM adopts an early-start schedule in which
activities are scheduled to start as soon as possible. The early-start schedule
may be represented by a vector of earliest start times s = {s1, s2, . . . , sn}.
The earliest start time of an activity j is defined as follows:

sj = max {fi|(i, j) ∈ A} , (1)

where fi is the earliest finish time of an activity i and equals:

fi = si + di. (2)

By convention, the project starts at time instance 0 (i.e., s1 = 0). According
to CPM, the project completion time c is given by:

c = fn. (3)

The longest path of the scheduled activities is called the critical path and
the activities on this path are critical activities.

Since the establishment of CPM, many extensions of the basic model have
been introduced: generalized precedence relationships, resource-constrained
project scheduling, multi-mode scheduling, critical chain buffer management,
etc. We refer to Demeulemeester and Herroelen (2002) for an extensive
overview of the field. In this article, we are particularly interested in what is
called stochastic project scheduling or stochastic CPM. For an overview of
the recent developments in stochastic project scheduling, refer to Elmaghraby
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(2000 and 2005), Bendavid and Golany (2009), Abdelkader (2010) and the
references therein. Stochastic CPM acknowledges that activity durations
are not deterministic. We model the duration of an activity j as a positive
random variable Dj. Because the duration of an activity is a random variable,
the earliest start and finish times of an activity are random variables as
well. Let Sj and Fj denote the random variable of the earliest start and
finish times of an activity j respectively. The project completion time is a
random variable C which is a function of Dj. Calculating the distribution
function of C is proven to be #P -complete (Hagstrom 1988) and thus requires
approximative methods such as Monte Carlo simulation (Van Slyke 1963).
Monte Carlo simulation is used to virtually execute a project a large number
of times, providing insight and allowing the project manager to enhance the
actual execution of the project.

We rely on Monte Carlo simulation to obtain random variates of Dj.
Let dj = {dj,1, dj,2, . . . , dj,q} denote the vector of q random variates of Dj

(where q represents the number of simulation iterations). We refer to dj as
the vector of realized durations of Dj. In addition, define sj the vector of
realized earliest start times of an activity j:

sj = max {fi|(i, j) ∈ A} , (4)

where fi is the vector of realized earliest finish times of an activity i and
equals:

fi = si + di. (5)

The vector of realized project completion times c is defined as follows:

c = fn. (6)

It is clear that sj, fj and c are vectors of random variates of random variables
Sj, Fj and C respectively.

3 Towards a risk-driven approach

One of the main challenges in project risk management is to estimate and to
model the uncertainty of activity durations. Often, it is assumed that the du-
ration of an activity follows a distribution that captures all uncertainty that
originates from the occurrence of risks (popular distributions include: the
triangular distribution, the beta distribution and the normal distribution).
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As such, risk assessment boils down to providing estimates of activity dura-
tion distribution parameters. We refer to this approach as the activity-based
approach.

In this article, we argue that the activity-based approach is inherently
flawed. As Hulett (2009) points out, there is no clear link between the im-
pact of identified risks on the duration of an activity and the distribution
of the activity duration itself (i.e., the activity-based approach is unable to
identify the root causes of the uncertainty in the duration of an activity). In
addition, our experience learns that practitioners have a hard time assessing
uncertainty by estimating the parameters of an activity duration distribution.

To resolve the problems of the activity-based approach, we devise a risk-
driven approach in which the impact of each risk is assessed individually and
is mapped to the duration of an activity afterwards. Our approach is based
on previous work by Schatteman et al. (2008) and Van de Vonder (2006)
and is similar to the risk-driver approach of Hulett (2009). Contrary to the
activity-based approach, we focus on risks as primary sources of uncertainty.
In what follows, we adopt an integrated approach that relies on Monte Carlo
simulation to evaluate the impact of risks on activity durations and on the
project completion time. Figure 2 presents a visual overview from which
it is clear that a risk-driven approach assesses the impact of root risks on
the uncertainty of the activities and on the project completion time. An
activity-based approach, on the other hand, assesses only the uncertainty of
the activities without observing the root risks that cause this uncertainty.

To further support the risk-driven approach, we provide the following
example. Consider an activity whose duration is impacted by two risks. The
first risk has a small impact yet a large probability of occurrence whereas
the second risk has a large impact but a small probability of occurrence.
The probability distribution of the duration of the activity is presented in
figure 3. From the figure, it is clear that fitting a distribution would result
in significant errors (the best fit of the triangular distribution is indicated
by the dotted line). In addition, it would be very hard for practitioners to
estimate the parameters of the fitted distribution. Assessing the probability
of occurrence and the impact of both risks on the other hand, would be a
manageable task and would result in the correct distribution of the duration
of the activity.

In order to formally define risks and their impacts, let R = {1, 2, . . . , r}
denote the set of risks and let M = {Mj,e|j ∈ N ∧ e ∈ R} denote the set of
risk impacts, where Mj,e is the random variable of the risk impact of a risk
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e on the duration of an activity j. Let mj,e = {mj,e,1,mj,e,2, . . . ,mj,e,q} repre-

sent the vector of random variates ofMj,e and define d
(E)
j =

{
d

(E)
j,1 , d

(E)
j,2 , . . . , d

(E)
j,q

}
,

the vector of random variates of the duration of an activity j when subject
to a set of risks E ⊆ R. The entries of d

(E)
j are computed as follows:

d
(E)
j,p = dj +

∑
e∈E

mj,e,p ∀p ∈ {1, 2, . . . , q} , (7)

where dj is the deterministic duration of an activity j (i.e., dj represents

the duration of an activity j when it is not impacted by risks). From d
(E)
j ,

we obtain s
(E)
j =

{
s

(E)
j,1 , s

(E)
j,2 , . . . , s

(E)
j,q

}
, f

(E)
j =

{
f

(E)
j,1 , f

(E)
j,2 , . . . , f

(E)
j,q

}
and

c(E) =
{
c

(E)
1 , c

(E)
2 , . . . , c

(E)
q

}
by generalizing equations 4, 5 and 6:

s
(E)
j = max

{
f

(E)
i |(i, j) ∈ A

}
, (8)

f
(E)
j = s

(E)
j + d

(E)
j , (9)

c(E) = f (E)
n . (10)

The expected project delay over q simulation iterations is defined as follows:

∆(E) =
1

q

q∑
p=1

c(E)
p − c, (11)

where c is the deterministic project completion time and is obtained using
equation 3.

4 Effective risk mitigation

Most commercial risk analysis software packages provide the functionality to
generate insight into the source of project overruns. The activities (or the
risks) that contribute most to the project delay are identified using ranking

indices. Let (·)(E)
j and (·)(E)

e denote the ranking values of a ranking index
(·) for an activity j and a risk e when activity durations are subject to a set
of risks E. The larger the ranking value, the larger the contribution of the
activity (or the risk) to the project delay. The ranking of activities (or risks)
is typically visualized using a ranked bar chart (see figure 4 for an example
of a ranked bar chart).
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Figure 4: Ranked bar chart

In the remainder of this section, we provide an overview of the existing
ranking indices and introduce two new ranking indices. The dynamics of
these ranking indices are illustrated by means of an example.

4.1 Literature review

In what follows, we provide an overview of the existing ranking indices. For
a more detailed discussion on the ranking indices presented below, refer to
Elmaghraby (2000) and Demeulemeester and Herroelen (2002).

4.1.1 Critical Activities (CA)

A common practice in project risk management is to focus mitigation efforts
on the critical activities of the deterministic early-start schedule s (Goldratt
1997). The Critical Activities (CA) ranking values are computed as follows:

CA
(E)
j = δj, (12)

where δj equals 1 if j is critical in s and 0 otherwise.
While easy to implement, CA does not recognize the uncertain nature of a

project. In addition, all activities on the critical chain have an equal ranking
value, thereby severely limiting the discriminative power of the ranking index.
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4.1.2 Activity Criticality Index (ACI )

In stochastic CPM, the critical path is not fixed. For instance, the occurrence
of risks may alter the critical path in a given network. The Activity Criticality
Index (ACI ) recognizes that almost any path and any activity can become
critical with a certain probability (Van Slyke 1963). When using Monte Carlo
simulation, the ACI of an activity is simply the proportion of simulation
iterations during which the activity is critical:

ACI
(E)
j =

1

q

q∑
p=1

δ
(E)
j,p , (13)

where δ
(E)
j,p equals 1 if j is critical in s

(E)
p and 0 otherwise (s

(E)
p is the early-

start schedule during a simulation iteration p when activity durations are
subject to a set of risks E).

ACI takes into account the criticality of an activity but not the variance
of its duration. Therefore, ACI is unable to identify the activities that
effectively contribute to the delay of the project. For instance, activities that
are not impacted by risks (and therefore do not contribute to the delay of
the project) can have a larger ACI than activities that become critical (and
that contribute to the project delay) only when impacted by a risk.

4.1.3 Significance Index (SI )

The Significance Index (SI ) was developed by Williams (1992) as an answer
to criticism on ACI. When using Monte Carlo simulation, SI is computed as
follows:

SI
(E)
j =

 1
q∑
p=1

c
(E)
p


[

q∑
p=1

(
d

(E)
j,p

d
(E)
j,p + TF

(E)
j,p

c(E)
p

)]
, (14)

where TF
(E)
j,p is the total float of an activity j during a simulation iteration

p when activity durations are subject to a set of risks E (refer to Demeule-
meester and Herroelen (2002) for a definition of total float).

SI tries to improve upon ACI by relating both the criticality of an activity
and the project completion time. Similarly to ACI, however, SI does not take
into account the variance of activity durations and is therefore also inherently
flawed.
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4.1.4 Cruciality Index (CRI )

The Cruciality Index (CRI ) is defined as the absolute value of the correlation
between the duration of an activity and the total project duration. When
using Monte Carlo simulation, CRI is computed as follows:

CRI
(E)
j =

∣∣∣corr
(
d

(E)
j , c(E)

)∣∣∣ . (15)

Although very intuitive, CRI has a few major drawbacks. First, it mea-
sures the linear relationship between the duration of an activity and the
completion time of a project. As is well known, the relationship between
these two entities may not be linear at all (Elmaghraby 2000). Second, CRI
does not take into account the criticality of the activities themselves. For
instance, a critical activity that has a small duration variability may have a
smaller CRI than an activity that is not critical at all but that has a large
duration variability.

4.1.5 Spearman Rank Correlation (SRCA)

Cho and Yum (1997) have criticized CRI because it assumes a linear re-
lationship between the duration of an activity and the project completion
time. They propose the use of a non-linear correlation measure such as the
Spearman rank correlation coefficient. The Spearman Rank Correlation In-
dex (SRCA) is computed as follows:

SRCA
(E)
j =

∣∣∣corr
(

rank
(
d

(E)
j

)
, rank

(
c(E)

))∣∣∣ . (16)

SRCA improves upon CRI as it allows for monotonic relationships rather
than linear relationships. Similarly to CRI, however, SRCA does not take
into account the criticality of the activities and as such is also apt to produce
counter-intuitive results.

4.1.6 Schedule Sensitivity Index (SSI )

The PMI Body of Knowledge (2008) and Vanhoucke (2010) define a ranking

index that combines ACI and the variance of d
(E)
j and c(E). When using

Monte Carlo simulation, the Schedule Sensitivity Index (SSI ) is computed
as follows:

SSI
(E)
j = ACI

(E)
j

√√√√Var
(
d

(E)
j

)
Var (c(E))

. (17)

11

http://dx.doi.org/10.1007/s10479-013-1355-y
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1007/s10479-013-1355-y · m www.stefancreemers.be · B info@stefancreemers.be

While SSI captures the variance of the activity durations as well as the
variance of the project completion time, it ignores the covariance that might
exist between these two entities.

4.1.7 Risk-Driven Ranking Indices

All prior ranking indices have been criticized in the literature (refer to Williams
(1992), Elmaghraby (2000) and Cui et al. (2006)) and are primarily designed
to rank activities, not risks. In this section, we introduce risk-driven ranking
indices.

To the best of our knowledge, Hulett (2009) is the only reference that
explicitly refers to a risk-driven ranking index. He proposes a simple adap-
tation of CRI such that it calculates the absolute value of the correlation
between the impact of a risk and the project completion time. When using
Monte Carlo simulation, the Cruciality Index for Risks (CRIR) is computed
as follows:

CRIR(E)
e =

∣∣corr
(
me, c

(E)
)∣∣ , (18)

where me = {me,1,me,2, . . . ,me,q},
(
me,p =

∑
j∈N mj,e,p

)
and e ∈ E. A

similar adaptation may be made with respect to SRCA:

SRCR(E)
e =

∣∣corr
(
rank (me) , rank

(
c(E)

))∣∣ . (19)

No simple risk-driven adaptation exists for the other activity-based rank-
ing indices (i.e., CA, ACI, SI and SSI ).

4.2 Two new ranking indices

The aim of the new ranking indices is to redistribute the project delay over
the combinations of activities and risks that cause the delay. More formally,
the Critical Delay Contribution (CDC ) of an activity j and a risk e may be
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expressed as follows:

CDC
(E)
j,e =

1

q

q∑
p=1

mj,e,pδ
(E)
j,p

(
c

(E)
p − c

)
∑
j∈N

∑
e∈E

q∑
p=1

mj,e,pδ
(E)
j,p

, (20)

= E

 mj,ey
(E)
j∑

j∈N

∑
e∈E

mj,ey
(E)
j

∆(E), (21)

where y
(E)
j =

{
δ

(E)
j,1 , δ

(E)
j,2 , . . . , δ

(E)
j,q

}
. CDC

(E)
j,e represents the proportion of the

project delay that originates from the impact of a risk e : e ∈ E on an activity
j.

From CDC
(E)
j,e , it is easy to obtain both an activity-based as well as a

risk-driven ranking index:

CDCA
(E)
j =

∑
e∈E

CDC
(E)
j,e , (22)

CDCR(E)
e =

∑
j∈N

CDC
(E)
j,e , (23)

where CDCA ranks activities and CDCR ranks risks.

4.3 Example

This section provides an example that allows us to illustrate the dynamics
of the different ranking indices. After presenting the example data, we show
how to compute the ranking values for each of the existing activity-based
and risk-driven ranking indices. Next, we explain how to obtain the ranking
values of the newly proposed ranking indices CDCA and CDCR.

4.3.1 Example data

Consider the project and corresponding early-start schedule that are pre-
sented in figure 5. The start and the completion of the project are represented
by dummy activities 1 and 6 respectively. The non-dummy activities have
deterministic durations (d2 = 1), (d3 = 2), (d4 = 4) and (d5 = 1). Therefore,
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Figure 5: Example project network and corresponding early-start schedule

E [Mj,e] (e = X) (e = Y ) (e = Z) Total
(j = 2) 0.50 1.50 0 2.00
(j = 3) 0.50 0 0 0.50
(j = 4) 0.50 0 1.25 1.75
(j = 5) 0 0 0 0
Total 1.50 1.50 1.25 4.25

Table 1: Example expected risk impacts

the deterministic project completion time is (c = 5). Three risks have been
identified. Let E = {X, Y, Z} denote the set of risks that impact the activ-
ities of the example project. The expected risk impacts are given in table 1
(we assume that dummy activities are not impacted by risks).

In the example, we observe four simulation iterations (i.e., we assume that
q equals four). For each simulation iteration p, figure 6 presents the GANTT
chart of the early-start schedule of the non-dummy activities. Note that
the expected risk impacts equal the average risk impacts over all simulation
iterations.

For each simulation iteration p, table 2 presents:

• the duration of the non-dummy activities,

• the rank of the duration of the non-dummy activities,

• the criticality of the non-dummy activities,

• the total float of the non-dummy activities,

• the total risk impacts,
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Figure 6: GANTT charts of the early-start schedule during the example
simulation iterations

• the rank of the total risk impacts,

• the project completion time,

• the rank of the project completion time,

• the project completion time after risk mitigation (we assume that a
risk is eliminated after being selected for mitigation)

As such, table 2 holds all the data required to compute the ranking values
of the ranking indices discussed in the previous section. In addition, table 2
already shows us which risk should in fact be mitigated. More precisely,
mitigating risk Y or risk Z results in an expected project completion time of
6.75 time units (i.e., a reduction of 0.25 time units). The mitigation of risk
X on the other hand, yields a reduction of 0.75 time units. Risk X should
therefore be selected as the risk on which to focus our mitigation efforts. In
the upcoming sections, we discover whether the ranking indices are able to
arrive at the same conclusion.

4.3.2 Activity-based ranking indices

Using the data from table 2, the ranking values of the different ranking
indices can easily be computed. Table 3 presents the ranking values of the
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Activity durations

d
(E)
j,p (p = 1) (p = 2) (p = 3) (p = 4) Average Variance

d
(E)
2,p 1 2 3 6 3.00 4.67

d
(E)
3,p 3 2 2 3 2.50 0.33

d
(E)
4,p 4 5 6 8 5.75 2.92

d
(E)
5,p 1 1 1 1 1.00 0.00

Rank of the activity durations

rank
(
d
(E)
j,p

)
(p = 1) (p = 2) (p = 3) (p = 4) Average Variance

rank
(
d
(E)
2,p

)
4 3 2 1 2.50 1.67

rank
(
d
(E)
3,p

)
1 2 2 1 1.50 0.33

rank
(
d
(E)
4,p

)
4 3 2 1 2.50 1.67

rank
(
d
(E)
5,p

)
1 1 1 1 1.00 0.00

Activity criticality

δ
(E)
j,p (p = 1) (p = 2) (p = 3) (p = 4) Average Variance

δ
(E)
2,p 1 0 0 1 0.50 0.33

δ
(E)
3,p 1 0 0 1 0.50 0.33

δ
(E)
4,p 1 1 1 0 0.75 0.25

δ
(E)
5,p 1 1 1 1 1.00 0.00

Activity total float

TF
(E)
j,p (p = 1) (p = 2) (p = 3) (p = 4) Average Variance

TF
(E)
2,p 0 1 1 0 0.50 0.33

TF
(E)
3,p 0 1 1 0 0.50 0.33

TF
(E)
4,p 0 0 0 1 0.25 0.25

TF
(E)
5,p 0 0 0 0 0.00 0.00

Total risk impact
me,p (p = 1) (p = 2) (p = 3) (p = 4) Average Variance
mX,p 1 2 1 2 1.50 0.33
mY,p 0 0 2 4 1.50 3.67
mZ,p 0 0 1 4 1.25 3.58

Rank of the total risk impact

rank
(
me,p

)
(p = 1) (p = 2) (p = 3) (p = 4) Average Variance

rank
(
mX,p

)
2 1 2 1 1.50 0.33

rank
(
mY,p

)
3 3 2 1 2.25 0.92

rank
(
mZ,p

)
3 3 2 1 2.25 0.92

Project completion time
(p = 1) (p = 2) (p = 3) (p = 4) Average Variance

c
(E)
p 5 6 7 10 7 4.67

Rank of the project completion time
(p = 1) (p = 2) (p = 3) (p = 4) Average Variance

rank
(
c
(E)
p

)
4 3 2 1 2.5 1.67

Project completion time after risk mitigation

c
(E\e)
p (p = 1) (p = 2) (p = 3) (p = 4) Average Variance

c
(E\X)
p 5 5 6 9 6.25 3.58

c
(E\Y )
p 5 6 7 9 6.75 2.92

c
(E\Z)
p 5 6 6 10 6.75 4.92

Table 2: Example simulation output
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Ranking values for the activity-based ranking indices
(·)j (j = 2) (j = 3) (j = 4) (j = 5)

CA
(E)
j 0 0 1.000 1.000

ACI
(E)
j 0.500 0.500 0.750 1.000

SI
(E)
j 0.866 0.845 0.960 1.000

CRI
(E)
j 1.000 0.267 0.994 0

SRCA
(E)
j 1.000 0 1.000 0

SSI
(E)
j 0.500 0.134 0.593 0

Table 3: Example ranking values for activity-based ranking indices

activity-based ranking indices (CDCA is not included here as it is discussed
in an upcoming section).

When observing the ranking values of criticality-based ranking indices
that do not take into account the variance of activity durations (i.e., CA,
ACI and SI ), it is clear that activity 5 is considered to have the largest im-
pact on the delay of the project. Activity 5, however, is not at all impacted
by risks, making it rather hard to determine the risk on which to focus our
mitigation efforts (i.e., we are unable to identify the root causes of uncer-
tainty). Two options arise: (1) we do not focus on activity 5 but select the
highest-ranked activity that is still impacted by risks and (2) we select and
mitigate a random risk. It is clear that the latter option is detrimental to the
performance of the ranking index. In addition, it makes sense to assume that
a project manager knows which activities are impacted by risks. Therefore,
in this article, activity-based ranking indices will only rank activities that
are impacted by risks.

When ranking only activities that are impacted by risks, we observe that
the ranking values of all criticality-based ranking indices (i.e., CA, ACI, SI
and SSI ) select activity 4 as the most important activity. Activity 4 is
impacted by two risks (i.e., risk X and risk Z), leaving us with two options:
(1) we randomly select one of both risks and (2) we select the risk that has
the largest expected impact on activity 4. In this article, we assume that
a project manager knows the expected impact of each risk on each of the
activities. Therefore, activity-based ranking indices select the risk that has
the largest expected impact on the highest-ranked activity. As a result, all
criticality-based ranking indices select risk Z as the best risk.
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(·)e (e = X) (e = Y ) (e = Z)

CRIR
(E)
j 0.535 0.967 0.978

SRCR
(E)
j 0.447 0.944 0.944

Table 4: Example ranking values for risk-driven ranking indices

With respect to ranking index CRI, activity 2 is ranked highest. Similarly
to activity 4, activity 2 is impacted by two risks (risk X and risk Y ) of whom
risk Y has the largest expected impact. Therefore, CRI selects risk Y to
be mitigated. SRCA, however, assigns the highest ranking value to both
activities 2 and 4. As such, we have to decide to either focus our mitigation
efforts on activity 2 (i.e., mitigate risk Y ) or on activity 4 (i.e., mitigate risk
Z). Because only one risk can be mitigated at a time, it makes sense to select
the risk that has the largest expected impact (i.e., from all risks impacting
the highest-ranked activities, we select the one that has the largest expected
impact). Therefore, ranking index SRCA selects risk Y to be mitigated (i.e.,
all correlation-based ranking indices choose to mitigate risk Y ).

4.3.3 Risk-driven ranking indices

Table 4 presents the ranking values of the risk-driven ranking indices (CDCR
is not included here as it is discussed in the upcoming section).

We observe that both CRIR and SRCR fail to select risk X as the best
candidate for mitigation. CRIR indicates that risk Z should be mitigated
whereas SRCR assigns an equal ranking value to both risk Y and risk Z. If
multiple risks are ranked highest, one of them has to be chosen randomly. In
order to evaluate the outcome of this random selection of risks, we observe
two scenarios. In a first scenario, risk Y is mitigated, whereas in a second
scenario risk Z is mitigated. Both scenarios have equal probability of being
realized and as such have a weight of 50 percent. The mitigation of either
risk Y or risk Z results in a project completion time of 6.75 time units. As
a result, the project completion time after mitigation equals 6.75 time units
when adopting ranking index SRCR.
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Figure 7: Illustration of the computation of CDCA and CDCR

4.3.4 Computation of CDCA and CDCR

Figure 7 illustrates the computation of the ranking values of CDCA and
CDCR. For each simulation iteration p, figure 7 presents: (1) a GANTT
chart of the early-start schedule of the non-dummy activities, (2) the impact
of a risk e on the duration of an activity j, (3) the proportion of the project
delay that is contributed by each of the activity-risk combinations and (4)
the proportion of CDC that can be assigned to each of the activity-risk
combinations.

In a first simulation iteration, risk X impacts activity 3. The project,
however, is not delayed and as such there is no delay to be distributed among
the activity-risk combinations.
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In a second simulation iteration, risk X impacts both activities 2 and 4.
As a result, the project is delayed by 1 time unit. It is clear that in this
simulation iteration, activity 2 is not critical. Therefore, activity 2 does not
contribute to the delay of the project even though it is impacted by risk
X. Activity 4 on the other hand, is critical and is also impacted by risk X.
Therefore, activity 4 (as well as risk X) contributes 1 time unit to the delay
of the project. Because we observe four simulation iterations, the proportion
of CDC that can be assigned to activity-risk combination (4, X) equals 1/4

time unit.
In a third simulation iteration, risk X again impacts activity 4. In ad-

dition, risk Z also impacts activity 4 whereas activity 2 is impacted by risk
Y . The project delay equals 2 time units. In this simulation iteration, ac-
tivity 4 is the only impacted activity that is critical. As such, activity 4 is
assigned the 2 time units of project delay. In order to distribute these 2 time
units of project delay over the root risks, we use the risk impacts as weights.
Therefore, risk X and risk Z are both assigned 1 time unit of project delay.
Dividing by the number of simulation iterations, yields the proportion of
CDC that can be assigned to the respective activity-risk combinations (i.e.,
1/4 time unit for both activity-risk combinations (4, X) and (4, Z)).

In a fourth and final simulation iteration, risk X impacts activities 2, 3
and 4. Risk Y impacts activity 2 and risk Z impacts activity 4. The project
is delayed by 5 time units. In this simulation iteration, both activities 2 and 3
are critical and their duration is impacted by risks X and Y (activity 4 is not
critical and as such does not contribute to the delay of the project). In order
to distribute the delay of the project over the critical activities, we use the
impact of all risks on their duration as weights. Activity 2 incurs a total risk
impact of 5 time units whereas the impact on the duration of activity 3 equals
1 time unit. Therefore, activities 2 and 3 are assigned 25/6 and 5/6 time units
of project delay respectively. In order to distribute the project delay over
the root risks, we once more use the risk impacts themselves as weights. The
impact on the duration of all critical activities equals 6 time units. Therefore,
one third of the project delay is assigned to risk X whereas risk Y is assigned
the remaining two thirds. Dividing by the number of simulation iterations
yields the proportion of CDC that can be assigned to each of the activity-risk
combinations (i.e., 5/24 time units for both activity-risk combinations (2, X)
and (3, X) and 5/6 time units for activity-risk combination (2, Y )).

When summing over all simulation iterations we obtain the ranking values
of ranking indices CDCA and CDCR (note that the expected project delay
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∆(E) equals the sum of all ranking values for CDCA as well as for CDCR). We
observe that CDCA considers activity 2 to be the activity that contributes
most to the delay of the project. Therefore, CDCA selects risk Y (i.e., the
risk that has the largest expected impact on the duration of activity 2) to
be mitigated. CDCR, however, assigns the highest ranking value to risk X,
making it the only ranking index that is able to correctly identify the best
candidate for mitigation.

5 Computational Experiment

Contrary to most of the literature, we will not assess the performance of
ranking indices by means of counterexamples. Our goal is to evaluate the
resilience of ranking indices in a wide variety of settings, using an extensive
experimental design. At the core of the experiment are the PSPLIB J120
project networks (Kolisch and Sprecher 1996). For each of these networks
and for each of the 48 distinct risk profiles defined below, we will evaluate
the mitigation efficiency of the ranking indices discussed in the previous
section. A similar approach is followed in Vanhoucke (2010), who considers
only activity-based ranking indices.

In what follows, we first discuss the experimental design itself. Next, we
deal with the experimental setup and discuss the main results. Finally, we
evaluate the validity and accuracy of the simulation model that is used to
assess the performance of the ranking indices.

5.1 Experimental design

For each of the projects in the PSPLIB J120 data set, uncertainty is in-
troduced by modeling a number of risks. Five parameters were selected to
characterize the risks: (1) risk uniformity, (2) risk quantity, (3) risk probabil-
ity, (4) risk impact and (5) risk correlation. The settings of these parameters
are based on our experience in the risk management field.

Risk uniformity deals with the number of activities that are impacted by a
single risk. Often, clusters of activities have a similar task content and hence
are subject to similar risks. We refer to these clusters of activities as activity
groups (Schatteman et al. 2008). When risk uniformity is low, the number of
activities impacted by any risk e ∈ R follows a discrete uniform distribution
with minimum and maximum equal to 1 and 3 activities respectively. A

21

http://dx.doi.org/10.1007/s10479-013-1355-y
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1007/s10479-013-1355-y · m www.stefancreemers.be · B info@stefancreemers.be

low risk uniformity setting results in an average of 60 activity groups in
a project network. The average number of activities in an activity group
equals 2. When risk uniformity is high, the number of activities impacted
by any risk e ∈ R follows a discrete uniform distribution with minimum and
maximum equal to 1 and 11 activities respectively. A high risk uniformity
setting corresponds to an average of 20 activity groups in a project network
whereas the average number of activities in an activity group equals 6.

Risk quantity indicates the number of risks that are identified during
the risk identification process. A low risk quantity setting corresponds to a
project in which activities are impacted by 25 risks. When risk quantity is
high, 50 risks impact the activities of a project. Risks are randomly assigned
to a single activity group. Note that it is possible that some activity groups
(and hence activities) are not impacted by risks (e.g., if the number of risks
is smaller than the number of activity groups).

Risk probability indicates the probability of occurrence of a risk whereas
risk impact defines the impact of a risk on the duration of an activity. We
define two types of risks: (1) risks with a large impact but with a small
probability of occurrence and (2) risks with a small impact but with a large
probability of occurrence. Risks are randomly assigned to a risk type, where
each risk has a 25 percent chance of being of type 1 (as such, risks have a 75
percent chance of being of type 2). For both risk types, we allow for high and
low settings of risk probability and risk impact. Table 5 presents the adopted
parameter settings. Note that: (1) the impact of a risk is modeled as a fixed
extension of the duration of an activity and follows a triangular distribution
and (2) the risk probability is modeled using a continuous uniform distri-
bution. We opt for the use of the triangular and the uniform distribution
as our experience learns that project managers find it easier to assess the
parameters that correspond to these distributions (e.g., a project manager is
able to assess the worst, best and most likely impact of a risk rather than
the alpha and beta parameter of a beta distribution).

Risk correlation indicates whether the occurrences of a risk (on activities
in the impacted activity group) are correlated. We investigate three possible
scenarios. A first scenario deals with the setting in which there is perfect
correlation (i.e., either all activities in the activity group are impacted or none
are). The second scenario, assumes that risk occurrences are independent
(i.e., there is no correlation between risk occurrences). In a third scenario,
we assume that the risk correlation is random, indicating that the occurrences
of a risk are correlated with a random correlation factor that is drawn from
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Risk Risk Risk Probability Impact
probability impact type min max min most likely max

High High Type 1 0.05 0.05 1.0 2.0 9.0
Type 2 0.1 0.7 0.0 1.0 2.0

High Low Type 1 0.05 0.05 0.5 1.0 4.5
Type 2 0.1 0.7 0.0 0.5 1.0

Low High Type 1 0.025 0.025 1.0 2.0 9.0
Type 2 0.05 0.35 0.0 1.0 2.0

Low Low Type 1 0.025 0.025 0.5 1.0 4.5
Type 2 0.05 0.35 0.0 0.5 1.0

Table 5: Parameter settings for risk probability and risk impact

a continuous uniform distribution with minimum and maximum equal to 0
and 1 respectively.

The possible settings of the five parameters combine to 48 distinct risk
profiles that are to be evaluated. For each risk profile and over all project
networks in the PSPLIB J120 data set, we will evaluate and compare the
mitigation efficiency of the ranking indices. Note that in this experiment, we
assume that the mitigation of a risk results in the elimination of that risk.

5.2 Experimental setup

In the experiment, we evaluate a total of 12 ranking indices, namely the
ten ranking indices discussed in section 4 (CA, ACI, SI, CRI, SRCA, SSI,
CRIR, SRCR, CDCA and CDCR) as well as two additional ranking indices:
(1) RAND randomly selects a risk from those risks still active and may
be considered as a worst-case scenario and (2) OPT is a greedy-optimal
procedure that evaluates the elimination of each risk and that selects the risk
that yields the largest reduction in project delay. OPT may be considered as
a best-case scenario, but has limited practical value due to its computational
requirements.

In what follows, we demonstrate how to obtain the set of highest-ranked
risks for both activity-based and risk-driven ranking indices. Next, we define
two performance measures and introduce a stepwise procedure that may be
used to assess the performance of a ranking index for a given project and a
given risk profile. In addition, we present the outline of the computational
experiment that allows us to evaluate the performance of all ranking indices
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over all projects and all risk profiles.

5.2.1 Determining the set of highest-ranked risks

Let B(E(·)) denote the subset of E that contains all risks in E that are ranked
highest by ranking index (·). If (·) is a risk-driven ranking index, B(E(·)) is
defined as follows:

B(E(·)) = {e∗ : (·)e∗ = max ((·)e)∀e
∗ : e ∈ E} . (24)

If (·) is an activity-based ranking index, a two-step procedure is required in
order to obtain the set of highest-ranked risks. In a first step, we determine
A(N(·)), the subset of N that contains all activities in N that are ranked
highest by ranking index (·). A(N(·)) is defined as follows:

A(N(·)) =
{
j∗ : (·)j∗ = max

(
(·)j
)
∀j∗, j ∈ N

}
. (25)

In a second step, we select the risks that have the largest expected impact
on the highest-ranked activities:

B(E(·)) =
{
e∗ : E [Mj,e∗ ] = max (E [Mj,e])∀j ∈ A(N(·)) ∧ ∀e∗, e ∈ E

}
. (26)

The two-step procedure assumes that all information known to the risk-driven
ranking indices is also known to the activity-based ranking indices (i.e., the
decision maker knows: (1) which activities are impacted by risks and (2)
the expected impact of each risk on each of the activities). Therefore, the
comparison between activity-based and risk-driven ranking indices is made
as fair as possible.

5.2.2 Definition of performance measures

In order to compare the performance of the ranking indices, define the Rel-
ative Residual Delay after mitigation of x risks using ranking index (·):

RRD(·)x =
∆(·)x

∆(·)0
, (27)

where ∆(·)x is the expected project delay after mitigation of x risks using
ranking index (·) and ∆(·)0 is the expected project delay before any mitigation
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takes place. It is clear that a smaller value for RRD(·)x corresponds to a more
effective ranking index.

Another measure to assess the performance of a ranking index (·) is the
Mitigation Efficiency Index (MEI(·)). MEI(·) is defined as follows:

MEI(·) = 1− 2

r∑
x=1

RRD(·)x

r − 1
(28)

The details of the dynamics of this measure may be found in the appendix.
In short, MEI(·) is supported on the [−1, 1] real interval, where a value of
(MEI(·) = 0) indicates that the performance of the ranking index equals that
of the random procedure. A value of (MEI(·) = 1) on the other hand, refers
to the optimal case in which mitigating a single risk is sufficient to resolve
all project uncertainty. It is clear that it is impossible to attain a value of
(MEI(·) = 1) in general.

5.2.3 Assessing the performance of a ranking index (·)

For a given risk profile and a given project in the PSPLIB J120 data set, we
generate mj,e, the vector of common risk impacts for all risks e : e ∈ R and
for all activities j : j ∈ N . Using these risk impacts, we assess the mitigation
efficiency of a ranking index (·) by means of a stepwise procedure.

In each step t, we evaluate a scenario πt : πt ∈ Π (where Π is the set of
all scenarios). A scenario πt is fully characterized by: (1) a weight λt and
(2) a set of risks Et : Et ⊆ R. Given a set of risks Et and the common risk
impacts generated earlier, we use equation 7 in order to obtain the vector
of realized durations d

(Et)
j for all j : j ∈ N . In turn, d

(Et)
n may be used to

calculate the expected project delay ∆(Et) using equations 8 – 11. During
each of the steps in the stepwise procedure, we update ∆(·)x as follows (note
that ∆(·)x is initialized to zero for all x : x ∈ {0, 1, . . . , r} at the start of the
stepwise procedure):

∆
(·)|E{

t | = ∆
(·)|E{

t | +
(
λt∆

(Et)
)
, (29)

where E{
t is the complement of E in R. Next, we use ranking index (·) to

obtain B(Et(·)), the set of highest-ranked risks. For each of the best risks
included in B(Et(·)), we determine the parameters of a scenario πue . More
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formally, for all e : e ∈ B(Et(·)), we define a scenario πue that is fully charac-
terized by:

λue =
λt

|B(Et(·))|
, (30)

Eue = Et \ e. (31)

If (Eue = Ez) for any z : πz ∈ Π, the scenario already exists. If the scenario
already exists, the weight of the existing scenario is increased as follows:

λz = λz + λue. (32)

If the scenario does not yet exist, we add it to the set of all scenarios Π (i.e.,
(Π = Π ∪ {πue})). After all risks in B(Et(·)) have been processed, we proceed
to step (t+ 1) and repeat the procedure until all scenarios in Π have been
evaluated.

The stepwise procedure starts with the evaluation of scenario π1 (π1 is
characterized by a weight (λ1 = 1) and a set of risks (E1 = R)). The stepwise
procedure ends after evaluation of scenario π|Π| (π|Π| is characterized by a
weight

(
λ|Π| = 1

)
and a set of risks

(
E|Π| = ∅

)
). An outline of the procedure

is given in algorithm 1. In addition, Figure 8 further illustrates the dynamics
of the stepwise procedure.

5.2.4 Computational experiment

The performance of the different ranking indices is assessed: (1) for each of
the 600 projects in the PSPLIB J120 data-set, (2) for each of the 48 risk
profiles and (3) for each step in the mitigation process. An outline of the
computational experiment is given in algorithm 2.

The computational experiment is coded in Visual C++ and was executed
on a Pentium IV 2.67 GHz personal computer. To obtain statistically sig-
nificant results, the execution of each scenario is simulated 1000 times. To
further increase the precision of the simulation results, we adopt variance
reduction techniques. More specifically, we use common random numbers
when assessing the mitigation efficiency of the different ranking indices for a
given project and a given risk profile (i.e., during each step of the mitigation
process and for each of the ranking indices, the same set of risk impacts is
used). The validity and accuracy of the simulation model are discussed in
section 5.4.
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Algorithm 1 Stepwise procedure
for x = 0 to r do

Initialize ∆(·)x to zero
end for
Define a first scenario π1 characterized by parameters λ1 = 1 and E1 = R
for all scenarios πt ∈ Π do

for p = 1 to q do
for j = 1 to n do

Use common risk impacts mj,e,p to compute d
(Et)
j,p using equation 7

end for
end for
Use d

(Et)
n to calculate ∆(Et) using equations 8 – 11

Update ∆
(·)∣∣∣E{

t

∣∣∣ using equation 29

if (·) is activity-based then
Obtain A(N(·)) using equation 25
From A(N(·)), obtain B(Et(·)) using equation 26

else
Obtain B(Et(·)) using equation 24

end if
for all e ∈ B(Et(·)) do

Determine the parameters of scenario πue using equations 30 – 31
if Eue = Ez for any z : πz ∈ Π then

Adapt the weight of πz using equation 32
else

Add πue to Π
end if

end for
end for
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Algorithm 2 Computational experiment
for all Project networks in the PSPLIB J120 data set do

for all Risk uniformity settings do
Assign activities to activity groups
for all Risk quantity settings do

Set r and define R = {1, 2, . . . , r}
for all Risk probability settings do

for all Risk impact settings do
for e = 1 to r do

Set the probability and impact of each risk
end for
for all Risk correlation settings do

Set the correlation of risk occurrences
for e = 1 to r do

for j = 1 to n do
for p = 1 to q do

For the current project and risk profile, generate common risk impactmj,e,p
end for

end for
end for
for all Ranking indices (·) do

use algorithm 1 to obtain ∆(·)x for all x : x ∈ {0, 1, . . . , r}
for all x = 0 to r do

compute performance measure RRD(·)x using equation 27
end for
For the current project and the current risk profile, compute performance measure
MEI(·) using equation 28

end for
end for

end for
end for

end for
end for

end for
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Figure 8: Illustration of the stepwise procedure that is used to assess ranking
index performance

5.3 Results

Figure 9 gives an overview of the average performance of the activity-based
ranking indices with respect to measure RRD(·)x for the range starting from
(x = 0) until (x = 10) (i.e., ten risks have been mitigated). The data are
aggregated over all 600 project networks in the PSPLIB J120 data sets and
over all 48 risk profiles. We observe that the mitigation of risks results in
a decrease of the expected project delay for each ranking index. Because
RAND randomly selects risks, its improvement is linear with the number of
risks mitigated. All other ranking indices follow a convex curve, implying that
risks with a larger impact on the project delay are selected first. One might
conclude that CDCA is outperformed only by SRCA. It is clear, however,
that there still exists a gap between the performance of the activity-based
indices and the OPT procedure.

Similarly to figure 9, figure 10 presents the performance of risk-driven
ranking indices with respect to measure RRD(·)x . We observe that SRCR
outperforms CRIR as well as the activity-based ranking indices. Of larger
importance, however, is the observation that CDCR (the risk-driven ranking
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Figure 9: Mitigation efficiency of activity-based ranking indices
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Figure 10: Mitigation efficiency of risk-driven ranking indices
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index proposed in this article) easily outperforms CRIR and SRCR and even
matches the performance of the OPT procedure. It is clear that CDCR sets
a new standard in the field of ranking indices.

Table 6 presents the performance of the different ranking indices with
respect to measure MEI(·). We observe that MEI(RAND) is smaller than 0.001
(i.e., is close to zero), indicating that the RAND procedure has no real mit-
igation potential. The OPT procedure boosts the highest values of MEI(·)

and is rivaled only by CDCR. Virtually no difference exists between the per-
formance of the OPT procedure and the CDCR ranking index. With respect
to the activity-based ranking indices, it is clear that SRCA takes the pole
position closely followed by CDCA, ACI and SI.

Furthermore, we observe that risk correlation seems to have a limited
impact on the performance of the ranking indices (certainly for those ranking
indices that perform well). Even for correlation-based ranking indices (i.e.,
CRI, CRIR, SRCA and SRCR) the difference in performance is not very
outspoken. A similar conclusion holds for risk probability. Its impact on
the performance of ranking indices is subtle to non-existing. Risk uniformity
on the other hand substantially affects the MEI(·) of the different ranking
indices. It is clear that a higher risk uniformity results in lower values of
MEI(·) (i.e., it is easier to distinguish between risks that only impact a small
number of activities). With respect to risk quantity, we observe that the
identification of more risks results in a decreased performance (i.e., if there
are more risks, the mitigation of a single risk tends to be less effective).
Risk impact has a negative effect on the MEI(·) of a ranking index. Lower
risk impacts correspond to higher values of MEI(·) (i.e., the relative effect
of mitigating a risk increases if there are only few risks that impact project
objectives).

5.4 Model accuracy and ranking value convergence

In this section, we first discuss the number of simulation iterations required
to obtain convergence in the project completion times. Next, we observe the
convergence in ranking values for each of the ranking indices. For both tests,
we observe only a single risk profile. More specifically, from the risk profiles
defined in section 5.1, we select the profile that has the largest variability in
project completion time (i.e., we assume a high risk uniformity, risk quantity,
risk probability and risk impact). We assume that there is no risk correlation.
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Index Avg Corr MEI(·)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
.000 0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

RAND .000 RND .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.000 1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
.698 0 .57 .60 .59 .61 .59 .61 .60 .62 .77 .79 .78 .80 .79 .81 .80 .82

OPT .697 RND .57 .60 .58 .61 .58 .61 .59 .62 .78 .80 .79 .80 .79 .81 .80 .82
.695 1 .56 .59 .58 .60 .58 .60 .59 .61 .78 .80 .79 .80 .79 .81 .80 .82
.621 0 .46 .50 .49 .52 .48 .52 .50 .53 .69 .75 .72 .76 .73 .77 .74 .78

CA .619 RND .45 .50 .48 .52 .48 .52 .50 .52 .70 .75 .72 .76 .73 .77 .74 .78
.614 1 .44 .49 .47 .50 .47 .51 .49 .52 .70 .75 .72 .76 .73 .77 .74 .78
.643 0 .49 .52 .51 .53 .51 .53 .52 .54 .74 .76 .75 .77 .77 .78 .77 .79

ACI .640 RND .49 .52 .50 .52 .50 .52 .51 .53 .75 .77 .76 .77 .76 .78 .77 .79
.637 1 .48 .51 .50 .52 .50 .52 .51 .53 .75 .77 .75 .77 .76 .78 .77 .79
.641 0 .49 .52 .51 .53 .51 .53 .52 .53 .74 .76 .75 .77 .76 .78 .77 .79

SI .639 RND .49 .52 .50 .52 .50 .52 .51 .53 .74 .77 .75 .77 .76 .78 .77 .79
.637 1 .48 .51 .49 .52 .50 .52 .51 .53 .74 .77 .75 .77 .76 .78 .77 .79
.612 0 .45 .49 .47 .50 .45 .49 .47 .50 .71 .74 .73 .75 .74 .76 .75 .77

CRI .636 RND .49 .53 .51 .55 .49 .52 .52 .54 .73 .75 .74 .76 .75 .77 .76 .77
.643 1 .49 .53 .52 .55 .50 .54 .53 .56 .73 .76 .75 .77 .75 .77 .76 .78
.657 0 .49 .53 .51 .54 .52 .55 .53 .56 .75 .78 .77 .79 .78 .81 .79 .81

SRCA .677 RND .53 .56 .55 .58 .55 .58 .56 .59 .76 .79 .78 .80 .79 .81 .79 .81
.680 1 .53 .57 .55 .58 .56 .59 .57 .60 .77 .79 .78 .80 .79 .81 .80 .82
.616 0 .46 .48 .48 .50 .46 .48 .48 .49 .73 .75 .74 .76 .75 .77 .76 .77

SSI .614 RND .45 .48 .48 .50 .46 .48 .47 .49 .73 .75 .74 .76 .75 .77 .76 .77
.610 1 .44 .47 .46 .49 .45 .47 .47 .48 .73 .75 .74 .76 .75 .77 .75 .77
.646 0 .47 .51 .49 .52 .50 .53 .51 .54 .75 .78 .76 .79 .78 .80 .79 .81

CDCA.644 RND .46 .51 .48 .53 .49 .53 .50 .54 .75 .78 .76 .79 .78 .80 .79 .81
.640 1 .45 .50 .47 .51 .48 .52 .50 .53 .75 .78 .76 .79 .78 .80 .78 .81
.639 0 .49 .53 .51 .54 .52 .55 .53 .55 .72 .75 .74 .76 .75 .77 .76 .78

CRIR .638 RND .49 .53 .52 .55 .50 .54 .53 .55 .73 .75 .74 .76 .75 .77 .76 .77
.635 1 .48 .51 .51 .54 .50 .53 .53 .55 .73 .75 .74 .76 .75 .77 .76 .77
.674 0 .52 .56 .54 .57 .56 .58 .57 .60 .75 .78 .77 .79 .78 .80 .80 .81

SRCR .684 RND .54 .58 .56 .60 .56 .59 .58 .60 .76 .78 .78 .80 .79 .81 .80 .82
.676 1 .50 .54 .56 .59 .55 .58 .58 .60 .75 .78 .78 .80 .79 .81 .80 .82
.697 0 .57 .60 .58 .61 .59 .61 .60 .62 .77 .79 .78 .80 .79 .81 .80 .82

CDCR .695 RND .56 .60 .58 .61 .58 .61 .59 .61 .77 .80 .78 .80 .79 .81 .80 .82
.692 1 .56 .59 .57 .60 .57 .60 .59 .61 .78 .80 .78 .80 .79 .81 .80 .82

Risk uniformity High Low
Risk quantity High Low High Low
Risk probability High Low High Low High Low High Low
Risk impact H L H L H L H L H L H L H L H L

Table 6: Mitigation efficiency of the different ranking indices
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5.4.1 Convergence in project completion times

For a given project l ∈ L (where L is the set of all projects in the PSPLIB

J120 data set), µ
(·)x
l,v and σ

(·)x
l,v denote the expected value and the standard

deviation of the project completion time after mitigation of x risks using rank-
ing index (·) when v simulation iterations are used to compute the project
completion time.

H
(·)x
l,v,w is the null hypothesis:

H
(·)x
l,v,w : µ

(·)x
l,v = µ

(·)x
l,w . (33)

In other words, for a project l and if x risks are eliminated using ranking index

(·), H(·)x
l,v,w predicts that there is no difference in expected project completion

time when v rather than w simulation iterations are used to compute the
project completion time. If no such difference exists for any value v′ (where
v < v′ < w) and if w is sufficiently larger than v, the expected project
completion time is said to converge after v simulation iterations.

In order to test H
(·)x
l,v,w, we adopt a Welch’s t-test (Welch, 1947). A Welch’s

t-test is an adaptation of a Student’s t-test and can be used to compare
the means of two normally distributed populations that are allowed to have

unequal variance. From Welch’s t-test, we obtain p
(·)x
l,v,w, the probability of

rejecting H
(·)x
l,v,w. In addition, define

ρ(·)
v,w,α =

1

|L|
∑
l∈L

1

r

r∑
x=0

δ
(·)x
l,v,w,α, (34)

where δ
(·)x
l,v,w,α equals 1 if

(
p

(·)x
l,v,w > α

)
and 0 otherwise. As such, ρ

(·)
v,w,α repre-

sents the proportion of projects for which the null hypothesis is rejected at
an α level of significance.

The number of simulation iterations that is used to compute the ranking
values determines the ranking of risks and hence the project completion time

at various steps in the mitigation process. Therefore, the rejection of H
(·)x
l,v,w

does not only depend on the number of simulation iterations itself, but also
on the ranking of risks. This, however, does not hold for the random proce-
dure discussed in section 5.2 (i.e., for RAND, the ranking of risks does not
depend on the number of simulation iterations). Therefore, we use RAND
to determine the ranking of risks in order to observe only the effect of the
number of simulation iterations on the project completion time.
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Figure 11: Proportion of projects that rejects the null hypothesis of equal
means

Figure 11 presents the proportion of projects that reject H
(RAND)x
l,v,w at a

0.05 level of significance, for all l ∈ L, for various values of v and for w equal to
4000. In addition, figure 12 presents the half-width of the confidence interval
around the expected project completion time (expressed as a percentage of
the mean).

For v larger or equal than 100, we observe that the proportion of projects
that rejects the null hypothesis approximates the probability of a type I
error (i.e., ρ

(RAND)
v,4000,0.05 approximates 0.05 for v larger or equal than 100). In

addition, as of 100 simulation iterations, the half-width becomes sufficiently
small such that accurate results may be obtained. As such, we conclude that
the project completion time converges starting from 100 simulation iterations
if the ranking of risks does not depend on the number of simulation iterations.

5.4.2 Convergence in ranking values

In the previous section, we have shown that 100 simulation iterations suffice
to obtain convergence in the completion time of a project if risks are ranked
randomly. In this section, we assess the convergence in project completion
times if risks are ranked using the ranking indices discussed in the previous
sections. If project completion times converge, the ranking of risks (and
hence the ranking values themselves) converges as well. Conversely, if project
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Figure 12: Average half-width of the 95 percent confidence interval around
the expected project completion time

completion times do not converge, the ranking of risks does not converge
either.

Table 7 presents ρ
(·)
v,1000,0.05 for all ranking indices defined in section 4 and

for various values of v.
From table 7, we observe that only few ranking indices are able to obtain

convergence in less than 1000 simulation iterations. As already discussed
in the previous section, the random procedure obtains convergence after 100
simulation iterations. The greedy-optimal procedure takes a bit longer. How-
ever, as project completion times converge, the greedy-optimal ranking of
risks converges as well. Activity-based ranking indices (in general) as well
as correlation-based ranking indices (in particular) have a much harder job
in obtaining convergence. Whereas risk-driven ranking indices that use cor-
relation seem to benefit from additional simulation iterations, activity-based
ranking show only limited improvement if the number of simulation iterations
is increased. This may be explained by the fact that there are more activities
than there are risks and that therefore a ranking of activities is more volatile
than a ranking of risks. In addition, this effect is further amplified because a
ranking of activities has to be mapped onto a ranking of risks (i.e., a two-step
procedure is required in order to obtain the set of highest-ranked risks when
using an activity-based ranking index).
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Index ρ
(·)
v,1000,0.05

RAND .05 .05 .05 .05 .05 .05 .05 .04 .05
OPT .09 .06 .04 .03 .03 .03 .03 .03 .03
CA .04 .04 .04 .04 .04 .04 .04 .04 .04
ACI .13 .12 .11 .11 .11 .12 .11 .11 .11
SI .13 .12 .12 .11 .11 .12 .10 .11 .11
CRI .33 .30 .30 .29 .29 .29 .28 .29 .28
SRCA .25 .25 .26 .27 .26 .27 .27 .27 .27
SSI .22 .20 .19 .19 .19 .19 .19 .18 .19
CDCA .17 .17 .17 .17 .17 .17 .18 .18 .18
CRIR .47 .38 .34 .33 .32 .31 .31 .31 .31
SRCR .49 .39 .33 .31 .29 .29 .29 .29 .29
CDCR .09 .07 .05 .05 .06 .05 .05 .05 .05
v 100 200 300 400 500 600 700 800 900

Table 7: Proportion of projects for which the null hypothesis is rejected for
different numbers of simulation iterations

More importantly, however, are the ranking indices that do obtain con-
vergence. Next to CDCR, CA is the only ranking index that is able to obtain
convergence in less than 1000 simulation iterations. This does not come as
a surprise. CA ranks activities based on whether they are critical in the
deterministic schedule s. As such, the ranking of risks does not depend on
the number of simulation iterations and converges at a rate that is equal to
the rate that applies when using a random ranking procedure. Even though
CA obtains convergence quite rapidly, its performance with respect to mit-
igating risks is much less to be desired. The performance of CDCR on the
other hand nearly matches that of the greedy-optimal procedure. In addi-
tion, CDCR is able to obtain convergence in project completion times in less
than 1000 simulation iterations, making it the only ranking index that can
be used with confidence in practice (i.e., CDCR is able to deliver accurate
results with a minimum of computational effort).

Notwithstanding the lack of convergence in most ranking values them-
selves, the MEI of each of the ranking indices does seem to converge. Table 8
presents the MEI for each of the ranking indices when different numbers of
simulation iterations are used to compute the project completion time (note
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Index MEI(·)

RAND .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
OPT .57 .57 .57 .56 .56 .56 .56 .56 .56 .56
CA .45 .45 .45 .45 .45 .45 .45 .45 .45 .45
ACI .48 .48 .48 .48 .48 .48 .48 .48 .48 .48
SI .49 .48 .48 .48 .48 .48 .48 .48 .48 .48
CRI .46 .46 .46 .45 .45 .45 .45 .45 .45 .45
SRCA .49 .50 .49 .49 .49 .49 .49 .49 .49 .49
SSI .47 .46 .46 .46 .46 .45 .45 .45 .45 .45
CDCA .47 .47 .46 .46 .46 .46 .46 .46 .46 .46
CRIR .41 .46 .47 .48 .48 .48 .48 .48 .49 .49
SRCR .42 .47 .49 .50 .50 .50 .51 .51 .51 .51
CDCR .57 .57 .56 .56 .56 .56 .56 .56 .56 .56
v 100 200 300 400 500 600 700 800 900 1000

Table 8: Mitigation efficiency of ranking indices for different numbers of
simulation iterations

that due to the use of different random numbers, the results for 1000 simula-
tion iterations differ slightly from those presented in table 6). These results
indicate that: (1) an increase of the number of simulation iterations (and
hence the computational burden) will result in marginal gains and (2) the
simulation model presented in this article is valid and accurate.

6 Additional experiments

In this section, we discuss four additional experiments. In a first experiment,
we observe what happens if only a proportion of the impact of a risk can be
mitigated (i.e., we assume that it is no longer possible to eliminate the impact
of a risk entirely). Next, we discuss the effect of multiplicative risk impacts
and risk impacts that are subject to noise. In a fourth and final experiment,
activities are no longer clustered in activity groups (i.e., we assume a risk
uniformity equal to one).

All experiments assess the performance of the ranking indices over the
600 project networks in the PSPLIB J120 data set. Unless mentioned oth-
erwise, we observe 16 risk profiles that are composed of all combinations of
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risk uniformity, risk quantity, risk probability and risk impact as defined in
section 5.1. We assume that there is no risk correlation.

6.1 Limited mitigation potential

In section 5, we assume that the impact of a risk can be eliminated entirely
when focussing the mitigation efforts on that risk. Often, however, it is only
possible to mitigate the impact of a risk up to a certain level. When risks
cannot be eliminated, the entries of d

(E)
j are computed as follows:

d
(E)
j,p = dj +

∑
e∈E

mj,e,p +
∑
e∈R\E

υemj,e,p, (35)

where υe is the proportion of the impact of a risk e that cannot be mitigated.
In this experiment, we use equation 35 (instead of equation 7) to deter-

mine d
(E)
j and observe what happens if υe equals 1/4 for all e ∈ R (i.e., we

assume that only 75 percent of the impact of a risk can be mitigated). The
results are presented in table 9.

From table 9, it is clear that there is a positive relationship between the
mitigation potential of a ranking index and its performance. In addition, one
can observe that the gap between the performance of the optimal procedure
and the performance of most ranking indices has spread even further. This
effect is most significant if risk uniformity is high (i.e., when it is more diffi-
cult to distinguish between risks). More importantly, however, is that these
conclusions do not hold for CDCR, whose performance once more matches
that of the greedy-optimal procedure.

6.2 Multiplicative risk impacts

In section 5, the impact of a risk is modeled as a fixed extension of the du-
ration of an activity. In the literature on project risk management, however,
many different types of risk impacts have been defined (e.g., breakdowns,
start-time delays, fixed impacts, proportional impacts etc.). All of these risk
impacts can be brought back to two main categories: (1) impacts that have
an additive effect on the duration of an activity and (2) impacts that have a
multiplicative effect. When activities are subject to risks that have an addi-
tive effect, equation 7 can be used to determine d

(E)
j . When subject to risks
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Index Avg MEI(·)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
RAND .001 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
OPT .538 .35 .40 .37 .42 .36 .41 .38 .42 .65 .69 .67 .71 .67 .71 .68 .72
CA .395 .19 .27 .22 .30 .22 .29 .24 .31 .43 .55 .47 .58 .50 .61 .52 .62
ACI .482 .27 .33 .29 .34 .29 .33 .30 .34 .61 .66 .62 .67 .64 .68 .65 .69
SI .463 .24 .32 .27 .33 .27 .33 .28 .34 .56 .64 .58 .66 .61 .67 .62 .68
CRI .424 .20 .28 .23 .30 .22 .29 .24 .30 .51 .60 .54 .62 .58 .64 .60 .65
SRCA .444 .23 .30 .25 .32 .27 .33 .28 .34 .51 .60 .54 .62 .59 .66 .61 .67
SSI .465 .24 .30 .27 .32 .25 .30 .27 .31 .60 .65 .62 .67 .63 .67 .64 .68

CDCA .490 .25 .32 .28 .34 .28 .34 .30 .35 .62 .68 .64 .69 .65 .70 .67 .71
CRIR .433 .21 .29 .24 .31 .26 .32 .28 .34 .49 .58 .53 .61 .58 .64 .60 .66
SRCR .446 .22 .30 .25 .32 .28 .34 .30 .36 .50 .59 .53 .61 .59 .66 .61 .67
CDCR .537 .34 .40 .37 .42 .36 .41 .38 .42 .65 .69 .67 .71 .67 .71 .68 .72
Risk uniformity High Low
Risk quantity High Low High Low
Risk probability High Low High Low High Low High Low
Risk impact H L H L H L H L H L H L H L H L

Table 9: Mitigation efficiency of the different ranking indices when the miti-
gation potential is limited

that have a multiplicative effect, the entries of d
(E)
j are computed as follows:

d
(E)
j,p = dj +

[∑
e∈E

(djmj,e,p)− dj

]
. (36)

In this experiment, we observe what happens when risks have a multiplica-
tive impact on activity durations. Table 10 presents the adopted parameter
settings as well as the expected impact on the duration of an activity. Note
that: (1) 5.5 time units approximates the average duration of an activity
in the project networks of the PSPLIB J120 data set and (2) table 10 also
provides the parameter settings of the additive risk impacts that were used
in section 5. The results of the experiment are presented in table 11.

It is clear that the conclusions presented in section 5 are still valid here.
Therefore, we conclude that the performance of a ranking index does not
depend on the impact type of a risk.
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Additive impact
Impact Type min most likely max Expected impact
High Type 1 1.0 2.0 9.0 4.0
High Type 2 0.0 1.0 2.0 1.0
Low Type 1 0.5 1.0 4.5 2.0
Low Type 2 0.0 0.5 1.0 0.5

Multiplicative impact (average duration = 5.5)
Impact Type min most likely max Expected impact
High Type 1 1.25 1.5 2.5 4.125
High Type 2 1.0 1.25 1.5 1.375
Low Type 1 1.125 1.25 1.75 2.0625
Low Type 2 1.0 1.125 1.25 0.6875

Table 10: Parameter settings for additive and multiplicative risk impacts

Index Avg MEI(·)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
RAND -.002 -.01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
OPT .728 .59 .64 .61 .65 .62 .65 .63 .66 .80 .83 .81 .83 .82 .84 .83 .85
CA .596 .43 .48 .46 .51 .45 .50 .48 .52 .65 .72 .69 .74 .69 .75 .71 .76
ACI .632 .48 .52 .49 .52 .49 .52 .50 .53 .73 .76 .74 .76 .75 .78 .76 .78
SI .655 .51 .54 .52 .55 .53 .55 .53 .55 .75 .78 .76 .78 .77 .79 .78 .80
CRI .678 .52 .57 .55 .59 .54 .58 .56 .59 .76 .80 .78 .81 .78 .81 .80 .82
SRCA .700 .54 .59 .57 .60 .58 .61 .59 .62 .78 .81 .80 .82 .81 .83 .82 .84
SSI .682 .53 .57 .55 .59 .54 .58 .57 .60 .77 .80 .78 .81 .79 .81 .80 .82

CDCA .687 .52 .57 .54 .58 .55 .59 .57 .61 .77 .81 .79 .82 .80 .83 .81 .84
CRIR .679 .52 .57 .54 .59 .55 .59 .57 .60 .76 .79 .78 .80 .78 .81 .79 .82
SRCR .708 .55 .60 .58 .62 .59 .63 .61 .64 .78 .81 .80 .82 .81 .83 .82 .84
CDCR .725 .59 .63 .61 .65 .61 .65 .63 .66 .79 .82 .80 .83 .81 .84 .82 .84
Risk uniformity High Low
Risk quantity High Low High Low
Risk probability High Low High Low High Low High Low
Risk impact H L H L H L H L H L H L H L H L

Table 11: Mitigation efficiency of the different ranking indices when risk
impacts are multiplicative
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6.3 Risk impacts subject to noise

In previous sections, we assume that risk probability and risk impact parame-
ters are known (i.e., we assume to have perfect information). Often, however,
these parameters need to be estimated and as we all know: estimates are al-
ways wrong. Estimators are subject to bias (i.e., the systematic under- or
overestimation of a parameter) and noise (i.e., random errors). When dis-
regarding bias, the estimated duration of an activity j during a simulation
iteration p, when subject to a set of risks E is given by:

d̂
(E)
j,p = dj +

∑
e∈E

(1 + ωup)mj,e,p, (37)

where ω is the level of noise applied and up is a random variate of a random
variable U that is uniformly distributed with minimum −1 and maximum 1.

In addition, let d̂
(E)
j =

{
d̂

(E)
j,1 , d̂

(E)
j,2 , . . . , d̂

(E)
j,q

}
denote the vector of estimates

that corresponds to the vector of realized durations d
(E)
j .

In this experiment, we use the estimated durations (i.e., d̂
(E)
j ) to deter-

mine the ranking values of the different ranking indices. In order to compute
the project completion time (i.e., c(E)), we use the realized durations d

(E)
j .

As such, the decision of which risk to select is based on the estimates whereas
the effect of the risk selection itself is determined using the real risk impacts.
We assume a deviation of up to 25 percent between the real risk impact and
its estimate (i.e., ω equals 1/4). The results of the experiment are presented
in table 12.

When comparing with the results in table 6, it is clear that there is vir-
tually no difference in the performance of the ranking indices if risk impacts
are subject to noise. This can be explained by the fact that the expected risk
impact (with or without noise) is the same. If bias were to be introduced,
we conjecture that the performance of all ranking indices would degrade.

6.4 Unity risk uniformity

In previous sections, we assume that a risk impacts only the activities that are
members of one and the same activity group. Therefore, the total expected
impact of a risk depends on the size of the impacted activity group (i.e.,
risks impacting large activity groups have a larger total expected impact
than risks that impact only a small activity group). Whereas risk-driven
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Index Avg MEI(·)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
RAND .000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
OPT .698 .57 .60 .59 .61 .59 .61 .60 .62 .77 .79 .78 .80 .79 .81 .80 .82
CA .620 .46 .50 .49 .52 .48 .52 .50 .53 .69 .75 .72 .76 .73 .77 .74 .78
ACI .642 .49 .52 .51 .53 .51 .53 .52 .53 .74 .76 .75 .77 .77 .78 .77 .79
SI .641 .49 .52 .51 .53 .51 .53 .52 .53 .74 .76 .75 .77 .76 .78 .77 .79
CRI .612 .45 .49 .47 .50 .45 .49 .47 .50 .71 .74 .73 .75 .74 .76 .75 .77
SRCA .657 .49 .53 .51 .54 .52 .55 .53 .56 .75 .78 .77 .79 .78 .81 .79 .81
SSI .615 .46 .48 .48 .50 .46 .48 .48 .49 .73 .75 .74 .76 .75 .77 .76 .77

CDCA .645 .47 .51 .49 .52 .50 .53 .51 .54 .75 .78 .76 .79 .78 .80 .79 .81
CRIR .639 .49 .53 .51 .54 .52 .55 .53 .55 .72 .75 .74 .76 .75 .77 .76 .78
SRCR .673 .52 .56 .54 .57 .55 .58 .57 .60 .75 .78 .77 .79 .78 .80 .80 .81
CDCR .696 .57 .60 .58 .61 .58 .61 .60 .62 .77 .79 .78 .80 .79 .81 .80 .82
Risk uniformity High Low
Risk quantity High Low High Low
Risk probability High Low High Low High Low High Low
Risk impact H L H L H L H L H L H L H L H L

Table 12: Mitigation efficiency of the different ranking indices when risk
impacts are subject to noise

ranking indices may exploit this information, activity-based ranking indices
cannot. Therefore, one might argue that risk-driven ranking indices have
an advantage over activity-based ranking indices. In order to offset this
advantage, we impose a risk uniformity equal to one. If risk uniformity
equals one, all risks impact the same set of activities (i.e., N). As such, no
more distinction can be made among risks based on the impacted activity
group.

In this experiment, we consider four different risk profiles. For each of
these profiles: (1) risk uniformity equals one, (2) risk quantity equals eight,
(3) risk probability equals 0.025 and (4) there is no risk correlation. The
parameter settings for risk impact are presented in table 13. Note that for
all risk profiles the expected impact equals 108 time units (assuming that
there are 120 project activities). The results of the experiment are presented
in table 14.

From table 14, it is clear that none of the ranking indices is able to
distinguish between risks if there is only one risk type. When observing
risk profiles 2,3 and 4, however, we see that even though risk-driven ranking
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Risk profile 1 (total expected impact = 108 time units)

Risk Number Risk probability Risk impact Expected
type of risks min max min most likely max impact

1 8 0.025 0.025 3 4.5 6 108

Risk profile 2 (total expected impact = 108 time units)

Risk Number Risk probability Risk impact Expected
type of risks min max min most likely max impact

1 4 0.025 0.025 3 4 5 48
2 4 0.025 0.025 4 5 6 60

Risk profile 3 (total expected impact = 108 time units)

Risk Number Risk probability Risk impact Expected
type of risks min max min most likely max impact

1 2 0.025 0.025 2 3 4 18
2 2 0.025 0.025 3 4 5 24
3 2 0.025 0.025 4 5 6 30
4 2 0.025 0.025 5 6 7 36

Risk profile 4 (total expected impact = 108 time units)

Risk Number Risk probability Risk impact Expected
type of risks min max min most likely max impact

1 1 0.025 0.025 0 1 2 3
2 1 0.025 0.025 1 2 3 6
3 1 0.025 0.025 2 3 4 9
4 1 0.025 0.025 3 4 5 12
5 1 0.025 0.025 4 5 6 15
6 1 0.025 0.025 5 6 7 18
7 1 0.025 0.025 6 7 8 21
8 1 0.025 0.025 7 8 9 24

Table 13: Risk profile parameter settings
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Index MEI(·)

RAND -.006 -.006 -.006 -.008
OPT .019 .073 .167 .338
CA .000 .001 .001 .002

ACI .001 .003 .004 .002
SI .001 .002 .006 .005

CRI .001 .005 .021 .070
SRCA .001 .006 .025 .074

SSI .002 .010 .036 .107
CDCA .002 .009 .036 .111
CRIR .001 .046 .146 .326
SRCR .000 .050 .149 .329
CDCR .017 .072 .167 .338

Risk profile 1 2 3 4

Table 14: Mitigation efficiency of the different ranking indices when risk
uniformity equals one

indices do no longer have the advantage discussed previously, they are still
able to outperform the activity-based ranking indices.

7 Conclusions

In this article, we introduced a quantitative, new approach to project risk
analysis that allows to address the risk response process in a scientifically-
sound manner. We have shown that a risk-driven approach is more effective
than an activity-based approach when it comes to analyzing risks. Therefore,
project risk management should focus on assessing the uncertainty caused by
risks themselves (i.e., the root cause) rather than evaluating the uncertainty
at the level of activities.

In addition, we developed two new ranking indices to assist project man-
agers in determining where to focus their risk mitigation efforts. Ranking
indices allow to identify the activities (or risks) that contribute most to the
delay of a project (popular ranking indices include the criticality index and
the significance index). We developed both an activity-based ranking index
(that ranks activities) and a risk-driven ranking index (that ranks risks). We

45

http://dx.doi.org/10.1007/s10479-013-1355-y
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1007/s10479-013-1355-y · m www.stefancreemers.be · B info@stefancreemers.be

refer to these ranking indices as CDCA and CDCR respectively. Both rank-
ing indices outperform existing ranking indices, with CDCR nearly matching
the performance of a greedy-optimal procedure. In addition, CDCR is the
only effective ranking index that is able to deliver accurate results within
reasonable computation times. It is clear that CDCR sets a new standard in
the field of ranking indices.

Our conclusions are supported by an extensive computational experiment
and were proven to be robust for a broad range of parameter settings. The
contributions of this article may be summarized as follows: (1) we assess
the performance of a wide variety of ranking indices using a large simulation
experiment, (2) we develop two new ranking indices that outperform existing
ranking indices and (3) we show that risk analysis should be risk-driven rather
than activity-based.

Appendix A

The following is a list of notation used in this article:

• (·)(E)
j : ranking value of an activity-based ranking index (·) when ac-

tivities are subject to a set of risks E : E ⊆ R.

• (·)(E)
e : ranking value of a risk-driven ranking index (·) when activities

are subject to a set of risks E : E ⊆ R.

• A = {(i, j)|i, j ∈ N} : set of arcs.

• A(N(·)) : subset of N that contains all activities in N that are ranked
highest by activity-based ranking index (·).

• B(E(·)) : subset of E that contains all risks in E that are ranked highest
by ranking index (·).

• c : deterministic project completion time.

• C : random variable that represents the project completion time.

• c = {c1, c2, . . . , cq} : vector of random variates of random variable C.

• c(E) =
{
c

(E)
1 , c

(E)
2 , . . . , c

(E)
q

}
: vector of random variates of the project

completion time when activities are subject to a set of risks E : E ⊆ R.
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• c(E)
p : project completion time during a simulation iteration p when

activities are subject to a set of risks E : E ⊆ R.

• dj : deterministic duration of an activity j.

• Dj : random variable that represents the duration of an activity j.

• dj = {dj,1, dj,2, . . . , dj,q} : vector of random variates of random variable
Dj.

• d
(E)
j =

{
d

(E)
j,1 , d

(E)
j,2 , . . . , d

(E)
j,q

}
: vector of random variates of the duration

of an activity j when subject to a set of risks E : E ⊆ R.

• d̂
(E)
j =

{
d̂

(E)
j,1 , d̂

(E)
j,2 , . . . , d̂

(E)
j,q

}
: estimator of d

(E)
j .

• d(E)
j,p : duration of an activity j during a simulation iteration p when

subject to a set of risks E : E ⊆ R.

• d̂(E)
j,p : estimator of d

(E)
j,p .

• δj : binary variable that equals 1 if activity j is critical in the deter-
ministic early-start schedule and 0 otherwise.

• δ(E)
j,p : binary variable that equals 1 if activity j is critical in s

(E)
p and 0

otherwise.

• ∆(E) : the expected project delay when activities are subject to a set
of risks E : E ⊆ R.

• δ(·)x
l,v,w,α : binary variable that equals 1 if H

(·)x
l,v,w is rejected at an α level

of significance and 0 otherwise.

• ∆(·)x : the expected project delay after mitigation of x risks using
ranking index (·).

• E: subset of R.

• fj : earliest deterministic finish time of an activity j.

• Fj : random variable that represents the earliest finish time of an ac-
tivity j.
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• fj = {fj,1, fj,2, . . . , fj,q} : vector of random variates of random variable
Fj.

• f
(E)
j =

{
f

(E)
j,1 , f

(E)
j,2 , . . . , f

(E)
j,q

}
: vector of random variates of the earliest

finish time of an activity j when activities are subject to a set of risks
E : E ⊆ R.

• f (E)
j,p : earliest finish time of an activity j during a simulation iteration
p when activities are subject to a set of risks E : E ⊆ R.

• G = (N,A) : graph that consists of a set of nodes N = {1, 2, . . . , n}
and a set of arcs A = {(i, j)|i, j ∈ N}.

• H(·)x
l,v,w : null hypothesis of equal expected project completion time if v

and w simulation iterations are used to compute the project completion
time of a project l.

• L : set of all project networks in the PSPLIB J120 data set.

• λt : weight assigned to a scenario πt.

• M = {Mj,e|j ∈ N ∧ e ∈ R} : set of risk impacts.

• Mj,e : random variable that represents the risk impact of a risk e on
the duration of an activity j.

• mj,e = {mj,e,1,mj,e,2, . . . ,mj,e,q} : vector of random variates of Mj,e.

• mj,e,p : impact of a risk e on an activity j during a simulation iteration
p.

• me = {me,1,me,2, . . . ,me,q} : vector of total risk impacts.

• me,p : total risk impact of a risk e over all activities j ∈ N during a
simulation iteration p.

• MEI(·) : Mitigation Efficiency Index of a ranking index (·).

• µ(·)x
l,v : expected project completion time after mitigation of x risks using

ranking index (·) when v simulation iterations are used to compute the
project completion time.
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• N = {1, 2, . . . , n} : set of nodes.

• ω : maximum deviation between real risk impacts and their estimates.

• p(·)x
l,v,w : probability of rejecting H

(·)x
l,v,w.

• πt : scenario evaluated at a step t that is characterized by a weight λt
and a set of risks Et : Et ⊆ R.

• Π : the set of all scenarios.

• q : number of simulation iterations.

• R = {1, 2, . . . , r} : set of all risks.

• RRD(E(·)x) : the Relative Residual Delay after mitigation of x risks
using ranking index (·).

• ρ(·)
v,w,α : the proportion of projects for which the null hypothesis of equal

means is rejected at an α level of significance.

• sj : earliest deterministic start time of an activity j.

• Sj : random variable that represents the earliest start time of an ac-
tivity j.

• sj = {sj,1, sj,2, . . . , sj,q} : vector of random variates of random variable
Sj.

• s
(E)
j =

{
s

(E)
j,1 , s

(E)
j,2 , . . . , s

(E)
j,q

}
: vector of random variates of the earliest

start time of an activity j when activities are subject to a set of risks
E : E ⊆ R.

• s(E)
j,p : earliest start time of an activity j during a simulation iteration
p when activities are subject to a set of risks E : E ⊆ R.

• s : vector of earliest start times when activity durations are determin-
istic.

• s
(E)
p : vector of earliest starting times during a simulation iteration p

when activities are subject to a set of risks E : E ⊆ R.
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• σ(·)x
l,v : standard deviation of the project completion time after mitiga-

tion of x risks using ranking index (·) when v simulation iterations are
used to compute the project completion time.

• TF
(E)
j,p : the total float of an activity j during a simulation iteration p

when activities are subject to a set of risks E : E ⊆ R.

• U : a random variable that is uniformly distributed with minimum −1
and maximum 1.

• up :a random variate of a random variable U .

• υe : proportion of a risk e that cannot be mitigated.

• y
(E)
j =

{
δ

(E)
j,1 , δ

(E)
j,2 , . . . , δ

(E)
j,q

}
: vector of random variates of the crit-

icality of an activity j when activities are subject to a set of risks
E : E ⊆ R.

Appendix B

The efficiency of a ranking index may be seen as its ability to correctly
identify those risks that have the largest impact on project objectives. As
such, for any good ranking index the following holds: RRD(·)x−1−RRD(·)x ≥
RRD(·)x−RRD(·)x+1 (i.e., RRD(·)x has to be convex in the interval x ∈ [1, r]).
We illustrate this logic in figure 13. RRD(·)x is convex if:

∀x ∈ [1, r] : RRD(·)x ≤
xRRD(·)r +

[
(r − x) RRD(·)0

]
r

. (38)

Because
(

RRD(·)r = 0
)

and
(

RRD(·)0 = 1
)

, the condition translates into:

∀x ∈ [1, r] : 1− x

r
− RRD(·)x ≥ 0. (39)

To assess the mitigation efficiency of a ranking index, we want to evaluate
the level of convexity of RRD(·)x . For this purpose, we develop the Mitigation
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x
(.)

RRD

xx-1 x+10 r

1

1 - (x / r)

Figure 13: Illustration of mitigation efficiency

Efficiency Index:

M̂EI
(·)

=
r∑

x=1

1− x

r
− RRD(·)x , (40)

=
r − 1

2
−

r∑
x=1

RRD(·)x , (41)

which corresponds to the surface of the gray area in the graph presented in

figure 13. In order to obtain a relative measure, we divide M̂EI
(·)

by
(
r−1

2

)
:

MEI(·) = 1− 2

r∑
x=1

RRD(·)x

r − 1
. (42)
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